Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Glowing 'Cornell dots' can show surgeons where tumors are

Memorial Sloan Kettering Cancer Center
C dots fluoresce brightly enough to be see through the skin of a mouse (barely visible in these photos). At left, dots accumulated in the liver and bladder 45 minutes after injection. At right, dots coated with polyethylene glycol have all reached the bladder in 45 minutes. These experiments demonstrate that C dots will be harmlessly excreted after they do their job.
Memorial Sloan Kettering Cancer Center
C dots fluoresce brightly enough to be see through the skin of a mouse (barely visible in these photos). At left, dots accumulated in the liver and bladder 45 minutes after injection. At right, dots coated with polyethylene glycol have all reached the bladder in 45 minutes. These experiments demonstrate that C dots will be harmlessly excreted after they do their job.

Abstract:
Brightly glowing nanoparticles known as "Cornell dots" are a safe, effective way to "light up" cancerous tumors so surgeons can find and remove them.

According to research at Memorial Sloan-Kettering Cancer Center (MSKCC), Cornell dots, also known as C dots, are biologically safe and stable and small enough to be easily transported across the body's structures and efficiently passed through the kidneys and out in urine.

Glowing 'Cornell dots' can show surgeons where tumors are

Ithaca, NY | Posted on February 19th, 2009

A single dot consists of several dye molecules encased in a silica shell that can be as small as 5 nanometers in diameter (a nanometer is one-billionth of a meter, about three times the diameter of a silicon atom). The silica shell, essentially glass, is chemically inert. Coating the dots with polyethylene glycol, a process called PEGylation, further protects them from being recognized by the body as foreign substances, giving them more time to find targeted tumors.

The outside of the shell can be coated with organic molecules that will attach to such desired targets as tumor surfaces or even locations within tumors. The cluster of dye molecules in a single dot fluoresces under near-infrared light much more brightly than single dye molecules, and the fluorescence will identify malignant cells, showing a surgeon exactly what needs to be cut out and helping ensure that all malignant cells are found.

According to MSKCC researchers, the technology also can show the extent of a tumor's blood vessels, cell death, treatment response and invasive or metastatic spread to lymph nodes and distant organs.

Cornell dots were developed in 2005 by Hooisweng Ow (pronounced "Hoy-sweng-Oh"), then a graduate student working with Ulrich Wiesner, Cornell associate professor of materials science and engineering. Their refinements of the dot design and experiments in mice at MSKCC are reported in the January 2009 issue of the journal Nano Letters (Vol. 9 No. 1) by Wiesner, Dr. Michelle Bradbury, a physician-scientist specializing in molecular imaging and neuroradiology at MSKCC, and colleagues.

"Highly sensitive and specific probes and molecular imaging strategies are critical to ensure the earliest possible detection of a tumor and timely response to treatment," said Bradbury. "Our findings may now be translated to the investigation of tumor targeting and treatment in the clinic, with the goal of ultimately helping physicians to better tailor treatment to a patient's individual tumor."

Since creating the Cornell dots, Wiesner, Ow and Kenneth Wang '77 have co-founded the company Hybrid Silica Technologies to commercialize the invention. The dots, Wiesner said, also have possible applications in displays, optical computing, sensors and such microarrays as DNA chips.

The latest research was supported by the Clinical and Translation Science Center at Weill Cornell Medical College and the Cornell Nanobiotechnology Center. The original research was funded by the National Science Foundation, New York state and Phillip Morris USA.

####

For more information, please click here

Contacts:
Media Contact:
Blaine Friedlander
(607) 254-8093


Bill Steele
(607) 255-7164


Chronicle Online
312 College Ave.
Ithaca, NY 14850
607.255.4206

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanoparticles could allow for faster, better medicine: Exposure of nanoparticles in the body allows for more effective delivery November 20th, 2017

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Nanometrics to Participate in the 6th Annual NYC Investor Summit 2017 November 16th, 2017

Imaging

The stacked color sensor: True colors meet minimization November 16th, 2017

Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs November 8th, 2017

Govt.-Legislation/Regulation/Funding/Policy

EC Project Aims at Creating and Commercializing Cyber-Physical-System Solutions November 14th, 2017

Nanobiotix presented new clinical and pre-clinical data confirming NBTXR3ís significant potential role in Immuno-Oncology at SITC Annual Meeting November 14th, 2017

Leti Joins DARPA-Funded Project to Develop Implantable Device for Restoring Vision November 9th, 2017

Nanoshells could deliver more chemo with fewer side effects: In vitro study verifies method for remotely triggering release of cancer drugs November 8th, 2017

Discoveries

Nanoparticles could allow for faster, better medicine: Exposure of nanoparticles in the body allows for more effective delivery November 20th, 2017

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Announcements

Nanoparticles could allow for faster, better medicine: Exposure of nanoparticles in the body allows for more effective delivery November 20th, 2017

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project