Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New imaging technique reveals the atomic structure of nanocrystals

Photo by L. Brian Stauffer
Jian-Min (Jim) Zuo, a professor of materials science and engineering, has developed a new imaging technique that can reveal the atomic structure of a single nanocrystal with a resolution of less than one angstrom (less than one hundred-millionth of a centimeter).
Photo by L. Brian Stauffer
Jian-Min (Jim) Zuo, a professor of materials science and engineering, has developed a new imaging technique that can reveal the atomic structure of a single nanocrystal with a resolution of less than one angstrom (less than one hundred-millionth of a centimeter).

Abstract:
A new imaging technique developed by researchers at the University of Illinois overcomes the limit of diffraction and can reveal the atomic structure of a single nanocrystal with a resolution of less than one angstrom (less than one hundredth-millionth of a centimeter).

New imaging technique reveals the atomic structure of nanocrystals

Champaign, IL | Posted on February 18th, 2009

Optical and electronic properties of small assemblages of atoms called quantum dots depend upon their electronic structure - not just what's on the surface, but also what's inside. While scientists can calculate the electronic structure, they need to know where the atoms are positioned in order to do so accurately.

Getting this information, however, has proved to be a challenge for nanocrystals like quantum dots. Mapping out the positions of atoms requires clues provided by the diffraction pattern. But quantum dots are so small, the clues provided by diffraction alone are not enough.

By combining two sources of information - images and diffraction patterns taken with the same electron microscope - researchers at the U. of I. can achieve sub-angstrom resolution of structures that were not possible before.

"We show that for cadmium-sulfide nanocrystals, the improved image resolution allows a determination of their atomic structures," said Jian-Min (Jim) Zuo, a professor of materials science and engineering at the U. of I., and corresponding author of a paper that describes the high-resolution imaging system in the February issue of Nature Physics.

Images from electron microscopy can resolve individual atoms in a nanocrystal, but the atoms soon suffer radiation damage, which limits the length of observations. Patterns from X-ray diffraction can be used to determine the structure of large crystals, but not for nanocrystals, which are too small and don't diffract well.

To achieve sub-angstrom resolution, Zuo and colleagues developed a reiterative algorithm that processes and combines shape information from the low-resolution image and structure information from the high-resolution diffraction pattern. Both the image and the diffraction pattern are taken with the same transmission-electron microscope.

"The low-resolution image provides the starting point by supplying missing information in the central beam and supplying essential marks for aligning the diffraction pattern," said Zuo, who also is a researcher at the university's Frederick Seitz Materials Research Laboratory. "Our phase-retrieval algorithm then reconstructs the image."

To demonstrate the technique, the researchers took a new look at cadmium-sulfide quantum dots.

"We chose cadmium-sulfide quantum dots because of their size-dependent optical and electronic properties, and the importance of atomic structure on these properties," Zuo said. "Cadmium-sulfide quantum dots have potential applications in solar energy conversion and in medical imaging."

Using the reiterative algorithm, the smallest separation between the cadmium and sulfide atomic columns was measured at 0.84 angstroms, the researchers report.

"Since low-resolution images can be obtained from different sources, our technique is general and can be applied to non-periodic structures, such as interfaces and local defects," Zuo said. "Our technique also provides a basis for imaging the three-dimensional structure of single nanoparticles."

With Zuo, co-authors of the paper are former doctoral student and lead author Weijie Huang (now at Dow Chemical Co.), U. of I. professor of materials science and engineering Moonsub Shim, former postdoctoral research associate Bin Jiang (now at FEI Co.), and former doctoral student Kwan-Wook Kwon (now at LAM Research).

The U.S. Department of Energy, the American Chemical Society and the National Science Foundation funded the work

####

For more information, please click here

Contacts:
James E. Kloeppel
Physical Sciences Editor
217-244-1073


Jian-Min Zuo
217-244-6504

Copyright © University of Illinois at Urbana-Champaign

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Imaging

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Observation of left and right at nanoscale with optical force October 6th, 2023

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Quantum Dots/Rods

A new kind of magnetism November 17th, 2023

IOP Publishing celebrates World Quantum Day with the announcement of a special quantum collection and the winners of two prestigious quantum awards April 14th, 2023

Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023

NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project