Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > New imaging technique reveals the atomic structure of nanocrystals

Photo by L. Brian Stauffer
Jian-Min (Jim) Zuo, a professor of materials science and engineering, has developed a new imaging technique that can reveal the atomic structure of a single nanocrystal with a resolution of less than one angstrom (less than one hundred-millionth of a centimeter).
Photo by L. Brian Stauffer
Jian-Min (Jim) Zuo, a professor of materials science and engineering, has developed a new imaging technique that can reveal the atomic structure of a single nanocrystal with a resolution of less than one angstrom (less than one hundred-millionth of a centimeter).

Abstract:
A new imaging technique developed by researchers at the University of Illinois overcomes the limit of diffraction and can reveal the atomic structure of a single nanocrystal with a resolution of less than one angstrom (less than one hundredth-millionth of a centimeter).

New imaging technique reveals the atomic structure of nanocrystals

Champaign, IL | Posted on February 18th, 2009

Optical and electronic properties of small assemblages of atoms called quantum dots depend upon their electronic structure - not just what's on the surface, but also what's inside. While scientists can calculate the electronic structure, they need to know where the atoms are positioned in order to do so accurately.

Getting this information, however, has proved to be a challenge for nanocrystals like quantum dots. Mapping out the positions of atoms requires clues provided by the diffraction pattern. But quantum dots are so small, the clues provided by diffraction alone are not enough.

By combining two sources of information - images and diffraction patterns taken with the same electron microscope - researchers at the U. of I. can achieve sub-angstrom resolution of structures that were not possible before.

"We show that for cadmium-sulfide nanocrystals, the improved image resolution allows a determination of their atomic structures," said Jian-Min (Jim) Zuo, a professor of materials science and engineering at the U. of I., and corresponding author of a paper that describes the high-resolution imaging system in the February issue of Nature Physics.

Images from electron microscopy can resolve individual atoms in a nanocrystal, but the atoms soon suffer radiation damage, which limits the length of observations. Patterns from X-ray diffraction can be used to determine the structure of large crystals, but not for nanocrystals, which are too small and don't diffract well.

To achieve sub-angstrom resolution, Zuo and colleagues developed a reiterative algorithm that processes and combines shape information from the low-resolution image and structure information from the high-resolution diffraction pattern. Both the image and the diffraction pattern are taken with the same transmission-electron microscope.

"The low-resolution image provides the starting point by supplying missing information in the central beam and supplying essential marks for aligning the diffraction pattern," said Zuo, who also is a researcher at the university's Frederick Seitz Materials Research Laboratory. "Our phase-retrieval algorithm then reconstructs the image."

To demonstrate the technique, the researchers took a new look at cadmium-sulfide quantum dots.

"We chose cadmium-sulfide quantum dots because of their size-dependent optical and electronic properties, and the importance of atomic structure on these properties," Zuo said. "Cadmium-sulfide quantum dots have potential applications in solar energy conversion and in medical imaging."

Using the reiterative algorithm, the smallest separation between the cadmium and sulfide atomic columns was measured at 0.84 angstroms, the researchers report.

"Since low-resolution images can be obtained from different sources, our technique is general and can be applied to non-periodic structures, such as interfaces and local defects," Zuo said. "Our technique also provides a basis for imaging the three-dimensional structure of single nanoparticles."

With Zuo, co-authors of the paper are former doctoral student and lead author Weijie Huang (now at Dow Chemical Co.), U. of I. professor of materials science and engineering Moonsub Shim, former postdoctoral research associate Bin Jiang (now at FEI Co.), and former doctoral student Kwan-Wook Kwon (now at LAM Research).

The U.S. Department of Energy, the American Chemical Society and the National Science Foundation funded the work

####

For more information, please click here

Contacts:
James E. Kloeppel
Physical Sciences Editor
217-244-1073


Jian-Min Zuo
217-244-6504

Copyright © University of Illinois at Urbana-Champaign

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

First Observation of Electronic Structure in Ag-Rh Alloy Nanoparticles Having Hydrogen Absorbing: Storage Property –Attempting to solve the mystery of why Ag-Rh alloy nanoparticles have a similar property to Pd– October 30th, 2014

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

Imaging

A new cheap and efficient method to improve SERS, an ultra-sensitive chemical detection technique October 28th, 2014

Molecular beacons shine light on how cells 'crawl' October 27th, 2014

National Synchrotron Light Source II Achieves 'First Light' October 23rd, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Govt.-Legislation/Regulation/Funding/Policy

'Electronic skin' could improve early breast cancer detection October 29th, 2014

New solar power material converts 90 percent of captured light into heat: SunShot Project aims to make solar cost competitive October 29th, 2014

Tiny carbon nanotube pores make big impact October 29th, 2014

Microrockets fueled by water neutralize chemical and biological warfare agents October 29th, 2014

Discoveries

First Observation of Electronic Structure in Ag-Rh Alloy Nanoparticles Having Hydrogen Absorbing: Storage Property –Attempting to solve the mystery of why Ag-Rh alloy nanoparticles have a similar property to Pd– October 30th, 2014

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

Announcements

First Observation of Electronic Structure in Ag-Rh Alloy Nanoparticles Having Hydrogen Absorbing: Storage Property –Attempting to solve the mystery of why Ag-Rh alloy nanoparticles have a similar property to Pd– October 30th, 2014

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

Tools

A new cheap and efficient method to improve SERS, an ultra-sensitive chemical detection technique October 28th, 2014

New Compact SIMS at 61st AVS | Visit us on Booth 311 October 28th, 2014

New nanodevice to improve cancer treatment monitoring October 27th, 2014

Haydale Secures Exclusive Development and Supply Agreement with Tantec A/S: New reactors to be built and commissioned by Tantec A/S represent another step forward towards the commercialisation of graphene October 24th, 2014

Quantum Dots/Rods

Journal Nanotechnology Progress International (JONPI), 2014, Volume 5, Issue 1, pp 1-24 October 22nd, 2014

QD Vision Wins Prestigious Presidential Green Chemistry Challenge Award from the U.S. Environmental Protection Agency October 16th, 2014

Ultrafast remote switching of light emission October 2nd, 2014

Platinum meets its match in quantum dots from coal: Rice University's cheap hybrid outperforms rare metal as fuel-cell catalyst October 1st, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE