Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nanoparticles Double Their Chances of Getting Into Sticky Situations

Abstract:
Chemistry researchers at the University of Warwick have found that tiny nanoparticles could be twice as likely to stick to the interface of two non mixing liquids than previously believed. This opens up a range of new possibilities for the uses of nanoparticles in living cells, polymer composites, and high-tech foams, gels, and paints. The researchers are also working on ways of further artificially enhancing this new found sticking power.

Nanoparticles Double Their Chances of Getting Into Sticky Situations

UK | Posted on February 17th, 2009

In a paper entitled "Interaction of nanoparticles with ideal liquid-liquid interfaces" just published in Physical Review Letters the University of Warwick researchers reviewed molecular simulations of the interaction between a non-charged nanoparticle and an "ideal" liquid-liquid interface. They were surprised to find that very small nanoparticles (of around 1 to 2 nanometres) varied considerably in their simulated ability to stick to such interfaces from what was expected in the standard model.

The researchers found that it took up to 50 percent more energy to dislodge the particles from the liquid-liquid interface for the smallest particle sizes. However as the radius of the particles increased this deviation from the standard model gradually faded out.

The researchers, Dr ir Stefan A. F. Bon and Dr David L. Cheung, believe that previous models failed to take into account the action of "capillary waves" in their depiction of the nanoparticles behaviour at the liquid to liquid interfaces.

Dr ir Stefan A. F. Bon said

" This new understanding on the nano-scale gives us much more flexibility in the design of everything from high-tech composite materials, to the use of quantum dots, cell biochemistry, and the manufacture of new "armored" polymer paint particles."

The researchers are now working on ways to build on this newly found natural stickiness of nanoparticles by designing polymer nanoparticles with opposing hydrophobic and hydrophilic surfaces that will bind even more strongly at oil/water liquid interfaces.

The research was funded by the Engineering and Physical Sciences Research Council (EPSRC)

####

For more information, please click here

Contacts:
Dr Stefan Bon, Associate Professor of Polymer Chemistry ,
Department of Chemistry. University of Warwick
Tel: 024 7657 4009 Email:

Or

David L. Cheung, Department of Chemistry & Centre for Scientific Computing,
University of Warwick, Tel: 024 76522261,

Peter Dunn, Press and Media Relations Manager, Communications Office, University of Warwick,
Tel: 024 76 523708 or 07767 655860 email:

Copyright © University of Warwick

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanoparticles present sustainable way to grow food crops May 1st, 2016

Searching for a nanotech self-organizing principle May 1st, 2016

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Chemistry

Adding some salt to the recipe for energy storage materials: Researchers use common table salt as growth template April 22nd, 2016

NRL reveals novel uniform coating process of p-ALD April 21st, 2016

Team builds first quantum cascade laser on silicon: Eliminates the need for an external light source for mid-infrared silicon photonic devices or photonic circuits April 21st, 2016

McMaster researchers achieve a first by coaxing molecules into assembling themselves: Major advance creates the potential for useful new materials April 21st, 2016

Govt.-Legislation/Regulation/Funding/Policy

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Nanomedicine

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Nanoparticles hold promise as double-edged sword against genital herpes April 28th, 2016

Arrowhead Pharmaceuticals Files for Regulatory Clearance to Begin Phase 1/2 Study of ARC-521 April 28th, 2016

The Translational Research Center at the University Hospital of Erlangen in Germany uses the ZetaView from Particle Metrix to quantify extracellular vesicles such as exosomes April 28th, 2016

Discoveries

Nanoparticles present sustainable way to grow food crops May 1st, 2016

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

Materials/Metamaterials

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Hybrid nanoantennas -- next-generation platform for ultradense data recording April 28th, 2016

Atomic magnets using hydrogen and graphene April 27th, 2016

Announcements

Nanoparticles present sustainable way to grow food crops May 1st, 2016

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

Nanobiotechnology

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Nanoparticles hold promise as double-edged sword against genital herpes April 28th, 2016

Arrowhead Pharmaceuticals Files for Regulatory Clearance to Begin Phase 1/2 Study of ARC-521 April 28th, 2016

The Translational Research Center at the University Hospital of Erlangen in Germany uses the ZetaView from Particle Metrix to quantify extracellular vesicles such as exosomes April 28th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic