Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Making the switch for DNA: New switches could lead the way in controlling DNA duplex formation with potential nanotechnology applications

Figure 1: This figure shows the reversible formation and destabilization of a DNA complex by a photochromic nucleoside (PCN) that changes formation under differing light conditions. The changes are monitored by fluorescence.
Figure 1: This figure shows the reversible formation and destabilization of a DNA complex by a photochromic nucleoside (PCN) that changes formation under differing light conditions. The changes are monitored by fluorescence.

Abstract:
Two RIKEN researchers have developed a switch to control the formation and separation of DNA duplexes that may have implications in many biological processes, such as gene regulation.

Making the switch for DNA: New switches could lead the way in controlling DNA duplex formation with potential nanotechnology applications

Japan | Posted on February 12th, 2009

Formation of complexes of our genetic building blocks, the nucleic acids, underlies many biological events. Hybridization of the nucleic acids, through interactions known as base pairing, forms the intricate complexes responsible for the formation of DNA duplexes. The ability to control hybridization, and consequently whether biological events take place, is a very important goal for scientists.

Now, Shinzi Ogasawara and Mizuo Maeda at the RIKEN Advanced Science Institute, Wako, have developed a light-controlled switch that directs the formation and destabilization of a series of DNA duplexes1.

They designed the photoswitch, a photochromic nucleoside (PCN), with several fundamental properties and benefits. The switch can be easily incorporated into a DNA strand and its physical conformation can be altered reversibly when irradiated by an external light source. Change of the physical conformation, by isomerization, disrupts and destabilizes the hybridization of two DNA strands. Another benefit of the PCN switch is that installing it into DNA has little influence on the structure of the duplex when it forms. Further, the PCN can be used as molecular trace label because it is fluorescent. This PCN photoswitch is therefore easy to track in the body and could be used in living cells without disruption.

The researchers irradiated a series of reaction mixtures containing PCN-modified DNA duplexes, which were fluorescent, with light at 370 nm for 5 minutes. After this time, only a slight fluorescence was seen. The PCN fragments had isomerized and the duplex broken. They then irradiated the mixtures at 254 nm for 2 minutes and the fluorescence returned, indicating a change back in conformation of the PCNs and importantly, hybridization to re-form the duplexes (Fig. 1). This switching showed good reversibility over two cycles.

Surprisingly, this easy switching system also works below room temperature. Ogasawara is naturally pleased with the current results. "There were no particular problems we had to overcome," he says. However, the synthesis of the PCNs was not as straightforward as they would have liked.

Ogasawara and Maeda now want to build on the results of this current study. "We plan to apply this technology to gene regulation such as antigene, antisense and siRNA," says Ogasawara. "We think that this light-switching technique can be applied to nanotechnology, for example [using] light [to] control DNA nanomachines and architectures."
Reference

1. Ogasawara, S. & Maeda, M. Straightforward and reversible photoregulation of hybridization by using a photochromic nucleoside. Angewandte Chemie International Edition 47, 8839-8842 (2008).
The corresponding author for this highlight is based at the RIKEN Bioengineering Laboratory

####

For more information, please click here

Copyright © Riken

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

article

Related News Press

News and information

New material science research may advance tech tools August 31st, 2015

Efficiency of Nanodrug Containing Antibiotics in Treatment of Infectious Diseases Evaluated August 31st, 2015

Artificial leaf harnesses sunlight for efficient fuel production August 30th, 2015

Researchers use DNA 'clews' to shuttle CRISPR-Cas9 gene-editing tool into cells August 30th, 2015

Molecular Machines

Injectable electronics: New system holds promise for basic neuroscience, treatment of neuro-degenerative diseases June 8th, 2015

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

UCLA nanoscientists are first to model atomic structures of three bacterial nanomachines: Cryo electron microscope enables scientists to explore the frontiers of targeted antibiotics April 21st, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Molecular Nanotechnology

Sandcastles inspire new nanoparticle binding technique August 5th, 2015

New computer model could explain how simple molecules took first step toward life: Two Brookhaven researchers developed theoretical model to explain the origins of self-replicating molecules July 28th, 2015

Rare form: Novel structures built from DNA emerge July 20th, 2015

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Nanomedicine

Efficiency of Nanodrug Containing Antibiotics in Treatment of Infectious Diseases Evaluated August 31st, 2015

Researchers use DNA 'clews' to shuttle CRISPR-Cas9 gene-editing tool into cells August 30th, 2015

Iranian Scientists Use Artemisia Annua Plant to Produce Breast Cancer Drugs August 29th, 2015

Small but heading for the big time: Nanobiotix half year results for the six months ended 30 June 2015, in line with expectations: Major clinical achievements and corporate developments August 28th, 2015

Discoveries

An engineered surface unsticks sticky water droplets August 31st, 2015

New material science research may advance tech tools August 31st, 2015

Efficiency of Nanodrug Containing Antibiotics in Treatment of Infectious Diseases Evaluated August 31st, 2015

Researchers use DNA 'clews' to shuttle CRISPR-Cas9 gene-editing tool into cells August 30th, 2015

Announcements

An engineered surface unsticks sticky water droplets August 31st, 2015

New material science research may advance tech tools August 31st, 2015

Efficiency of Nanodrug Containing Antibiotics in Treatment of Infectious Diseases Evaluated August 31st, 2015

Researchers use DNA 'clews' to shuttle CRISPR-Cas9 gene-editing tool into cells August 30th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic