Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Making the switch for DNA: New switches could lead the way in controlling DNA duplex formation with potential nanotechnology applications

Figure 1: This figure shows the reversible formation and destabilization of a DNA complex by a photochromic nucleoside (PCN) that changes formation under differing light conditions. The changes are monitored by fluorescence.
Figure 1: This figure shows the reversible formation and destabilization of a DNA complex by a photochromic nucleoside (PCN) that changes formation under differing light conditions. The changes are monitored by fluorescence.

Abstract:
Two RIKEN researchers have developed a switch to control the formation and separation of DNA duplexes that may have implications in many biological processes, such as gene regulation.

Making the switch for DNA: New switches could lead the way in controlling DNA duplex formation with potential nanotechnology applications

Japan | Posted on February 12th, 2009

Formation of complexes of our genetic building blocks, the nucleic acids, underlies many biological events. Hybridization of the nucleic acids, through interactions known as base pairing, forms the intricate complexes responsible for the formation of DNA duplexes. The ability to control hybridization, and consequently whether biological events take place, is a very important goal for scientists.

Now, Shinzi Ogasawara and Mizuo Maeda at the RIKEN Advanced Science Institute, Wako, have developed a light-controlled switch that directs the formation and destabilization of a series of DNA duplexes1.

They designed the photoswitch, a photochromic nucleoside (PCN), with several fundamental properties and benefits. The switch can be easily incorporated into a DNA strand and its physical conformation can be altered reversibly when irradiated by an external light source. Change of the physical conformation, by isomerization, disrupts and destabilizes the hybridization of two DNA strands. Another benefit of the PCN switch is that installing it into DNA has little influence on the structure of the duplex when it forms. Further, the PCN can be used as molecular trace label because it is fluorescent. This PCN photoswitch is therefore easy to track in the body and could be used in living cells without disruption.

The researchers irradiated a series of reaction mixtures containing PCN-modified DNA duplexes, which were fluorescent, with light at 370 nm for 5 minutes. After this time, only a slight fluorescence was seen. The PCN fragments had isomerized and the duplex broken. They then irradiated the mixtures at 254 nm for 2 minutes and the fluorescence returned, indicating a change back in conformation of the PCNs and importantly, hybridization to re-form the duplexes (Fig. 1). This switching showed good reversibility over two cycles.

Surprisingly, this easy switching system also works below room temperature. Ogasawara is naturally pleased with the current results. "There were no particular problems we had to overcome," he says. However, the synthesis of the PCNs was not as straightforward as they would have liked.

Ogasawara and Maeda now want to build on the results of this current study. "We plan to apply this technology to gene regulation such as antigene, antisense and siRNA," says Ogasawara. "We think that this light-switching technique can be applied to nanotechnology, for example [using] light [to] control DNA nanomachines and architectures."
Reference

1. Ogasawara, S. & Maeda, M. Straightforward and reversible photoregulation of hybridization by using a photochromic nucleoside. Angewandte Chemie International Edition 47, 8839-8842 (2008).
The corresponding author for this highlight is based at the RIKEN Bioengineering Laboratory

####

For more information, please click here

Copyright © Riken

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

article

Related News Press

News and information

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Nitrogen Doped Graphene Characterized by Iranian, Russian, German Scientists October 21st, 2014

Physicists build reversible laser tractor beam October 20th, 2014

Removal of Limitations of Composites at Superheat Temperatures October 20th, 2014

Molecular Machines

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

Breakthrough laser experiment reveals liquid-like motion of atoms in an ultra-cold cluster: University of Leicester research team unlocks insights into creation of new nano-materials July 25th, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

Molecular Nanotechnology

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Fast, cheap nanomanufacturing: Arrays of tiny conical tips that eject ionized materials could fabricate nanoscale devices cheaply October 4th, 2014

Nano-bearings on the test bench: Fullerene spheres can be used to slide in the nanoworld October 3rd, 2014

Penn Team Studies Nanocrystals by Passing Them Through Tiny Pores September 26th, 2014

Nanomedicine

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Design of micro and nanoparticles to improve treatments for Alzheimers and Parkinsons: At the Faculty of Pharmacy of the UPV/EHU-University of the Basque Country encapsulation techniques are being developed to deliver correctly and effectively certain drugs October 20th, 2014

Non-Toxic Nanocatalysts Open New Window for Significant Decrease in Reaction Process October 19th, 2014

European Commission opens the gate towards the implementation of Nanomedicine Translation Hub October 16th, 2014

Discoveries

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Nitrogen Doped Graphene Characterized by Iranian, Russian, German Scientists October 21st, 2014

Physicists build reversible laser tractor beam October 20th, 2014

Removal of Limitations of Composites at Superheat Temperatures October 20th, 2014

Announcements

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Nitrogen Doped Graphene Characterized by Iranian, Russian, German Scientists October 21st, 2014

Physicists build reversible laser tractor beam October 20th, 2014

Removal of Limitations of Composites at Superheat Temperatures October 20th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE