Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Making the switch for DNA: New switches could lead the way in controlling DNA duplex formation with potential nanotechnology applications

Figure 1: This figure shows the reversible formation and destabilization of a DNA complex by a photochromic nucleoside (PCN) that changes formation under differing light conditions. The changes are monitored by fluorescence.
Figure 1: This figure shows the reversible formation and destabilization of a DNA complex by a photochromic nucleoside (PCN) that changes formation under differing light conditions. The changes are monitored by fluorescence.

Abstract:
Two RIKEN researchers have developed a switch to control the formation and separation of DNA duplexes that may have implications in many biological processes, such as gene regulation.

Making the switch for DNA: New switches could lead the way in controlling DNA duplex formation with potential nanotechnology applications

Japan | Posted on February 12th, 2009

Formation of complexes of our genetic building blocks, the nucleic acids, underlies many biological events. Hybridization of the nucleic acids, through interactions known as base pairing, forms the intricate complexes responsible for the formation of DNA duplexes. The ability to control hybridization, and consequently whether biological events take place, is a very important goal for scientists.

Now, Shinzi Ogasawara and Mizuo Maeda at the RIKEN Advanced Science Institute, Wako, have developed a light-controlled switch that directs the formation and destabilization of a series of DNA duplexes1.

They designed the photoswitch, a photochromic nucleoside (PCN), with several fundamental properties and benefits. The switch can be easily incorporated into a DNA strand and its physical conformation can be altered reversibly when irradiated by an external light source. Change of the physical conformation, by isomerization, disrupts and destabilizes the hybridization of two DNA strands. Another benefit of the PCN switch is that installing it into DNA has little influence on the structure of the duplex when it forms. Further, the PCN can be used as molecular trace label because it is fluorescent. This PCN photoswitch is therefore easy to track in the body and could be used in living cells without disruption.

The researchers irradiated a series of reaction mixtures containing PCN-modified DNA duplexes, which were fluorescent, with light at 370 nm for 5 minutes. After this time, only a slight fluorescence was seen. The PCN fragments had isomerized and the duplex broken. They then irradiated the mixtures at 254 nm for 2 minutes and the fluorescence returned, indicating a change back in conformation of the PCNs and importantly, hybridization to re-form the duplexes (Fig. 1). This switching showed good reversibility over two cycles.

Surprisingly, this easy switching system also works below room temperature. Ogasawara is naturally pleased with the current results. "There were no particular problems we had to overcome," he says. However, the synthesis of the PCNs was not as straightforward as they would have liked.

Ogasawara and Maeda now want to build on the results of this current study. "We plan to apply this technology to gene regulation such as antigene, antisense and siRNA," says Ogasawara. "We think that this light-switching technique can be applied to nanotechnology, for example [using] light [to] control DNA nanomachines and architectures."
Reference

1. Ogasawara, S. & Maeda, M. Straightforward and reversible photoregulation of hybridization by using a photochromic nucleoside. Angewandte Chemie International Edition 47, 8839-8842 (2008).
The corresponding author for this highlight is based at the RIKEN Bioengineering Laboratory

####

For more information, please click here

Copyright © Riken

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

article

Related News Press

News and information

Scientific breakthrough in rechargeable batteries: Researchers from Singapore and Québec Team Up to Develop Next-Generation Materials to Power Electronic Devices and Electric Vehicles February 28th, 2015

First detailed microscopy evidence of bacteria at the lower size limit of life: Berkeley Lab research provides comprehensive description of ultra-small bacteria February 28th, 2015

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Molecular Machines

Monitoring the real-time deformation of carbon nanocoils under axial loading February 18th, 2015

Stomach acid-powered micromotors get their first test in a living animal January 27th, 2015

Nanoshuttle wear and tear: It's the mileage, not the age January 26th, 2015

Mysteries of ‘Molecular Machines’ Revealed: Phenix software uses X-ray diffraction spots to produce 3-D image December 22nd, 2014

Molecular Nanotechnology

Monitoring the real-time deformation of carbon nanocoils under axial loading February 18th, 2015

Nanotechnology: Better measurements of single molecule circuits February 18th, 2015

Half spheres for molecular circuits: Corannulene shows promising electronic properties February 17th, 2015

Tiny robotic 'hands' could improve cancer diagnostics, drug delivery February 4th, 2015

Nanomedicine

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Cutting-edge technology optimizes cancer therapy with nanomedicine drug combinations: UCLA bioengineers develop platform that offers personalized approach to treatment February 24th, 2015

Optical nanoantennas set the stage for a NEMS lab-on-a-chip revolution February 24th, 2015

Discoveries

First detailed microscopy evidence of bacteria at the lower size limit of life: Berkeley Lab research provides comprehensive description of ultra-small bacteria February 28th, 2015

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Announcements

Scientific breakthrough in rechargeable batteries: Researchers from Singapore and Québec Team Up to Develop Next-Generation Materials to Power Electronic Devices and Electric Vehicles February 28th, 2015

First detailed microscopy evidence of bacteria at the lower size limit of life: Berkeley Lab research provides comprehensive description of ultra-small bacteria February 28th, 2015

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE