Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Spin currents: pure and clean: Switching the orientation of magnetization in a thin metallic film can be achieved using the diffusion of electron spin

Figure 1: Top view of the device used to switch magnetization using a pure spin current. A current, I, is injected from the gold wire into the permalloy film with magnetization M1. The copper wire creates a spin accumulation at the junction (green). The spin diffuses towards the second junction and can switch the magnetization M2 of the second permalloy film. 

Reproduced from Ref. 1 © 2008 Macmillan Publishers Limited
Figure 1: Top view of the device used to switch magnetization using a pure spin current. A current, I, is injected from the gold wire into the permalloy film with magnetization M1. The copper wire creates a spin accumulation at the junction (green). The spin diffuses towards the second junction and can switch the magnetization M2 of the second permalloy film.
Reproduced from Ref. 1 © 2008 Macmillan Publishers Limited

Abstract:
A team of scientists in Japan has demonstrated the possibility of switching the magnetization of a thin magnetic film with a non-conventional and innovative method, achieving a considerable step forward in magnetic data storage and the field known as spintronics.

Spin currents: pure and clean: Switching the orientation of magnetization in a thin metallic film can be achieved using the diffusion of electron spin

Japan | Posted on February 12th, 2009

In magnetic memory devices, information is stored in magnetic elements and typically retrieved by applying a small, external magnetic field. More convenient, however, is the use of a spin-polarized current, in which moving electrons exert a torque on a magnetic element and can switch the direction of its magnetization.

Unfortunately, moving electrons can give rise to electrical noise, which reduces the efficiency of the magnetization control. Now, Yoshichika Otani from the RIKEN Advanced Science Institute in Wako and colleagues have overcome this problem by using a pure spin current1, that is, a diffusion of electron spins without charge motion.

A spin current can be created by the process known as non-local injection: a current is injected into a junction between a metal and a magnetic layer (Fig. 1). When the magnetic element is magnetized, such as a metallic film, electron spins accumulate at the junction, and then diffuse away from the junction to re-equilibrate the spin population in the film. The trick is to then use this spin current to influence the magnetization of another magnetic element placed far from the accumulation point.

Previous attempts to create a pure spin current in this way have all met with limited success. Otani and co-workers therefore focused on optimizing the quality of the interface. In particular, they grew all the layers of their devices in sequence in a single high-vacuum chamber. This prevented possible contamination that could occur while moving a structure between growing chambers.

By examining the electronic transport properties of their device, the researchers were able to demonstrate that when the current injected into the first junction is high enough, it creates a spin current high enough to reverse the magnetization at the second junction. Most importantly, the magnetization can be reversed back by applying the same amount of current in the opposite direction.

Magnetization control using a pure spin current in this way in the high-quality devices fabricated by the team could lead to the realization of very advanced electronic devices. The team believes, for example, that it will be possible to achieve different types of transistors—which have no analogues in current electronics—based only on electron spin.
Reference

1. Yang, T., Kimura, T. & Otani, Y. Giant spin-accumulation signal and pure spin-current-induced reversible magnetization switching. Nature Physics 4, 851-854 (2008).

The corresponding author for this highlight is based at the RIKEN Quantum Nano-Scale Magnetics Team

####

For more information, please click here

Copyright © Riken

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

article

Related News Press

News and information

A new product to help combat mouldy walls, thanks to technology developed at the ICN2 December 14th, 2017

Sandia researchers make solid ground toward better lithium-ion battery interfaces: Reducing the traffic jam in batteries December 13th, 2017

Perking up and crimping the 'bristles' of polyelectrolyte brushes December 13th, 2017

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

Spintronics

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Rice U. lab surprised by ultraflat magnets: Researchers create atom-thick alloys with unanticipated magnetic properties October 13th, 2017

A Sea of Spinning Electrons: Rutgers-led discovery could spawn a wave of new electronic devices October 2nd, 2017

Chip Technology

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

UCLA chemists synthesize narrow ribbons of graphene using only light and heat: Tiny structures could be next-generation solution for smaller electronic devices December 8th, 2017

Device makes power conversion more efficient: New design could dramatically cut energy waste in electric vehicles, data centers, and the power grid December 8th, 2017

Leti Integrates Hybrid III-V Silicon Lasers on 200mm Wafers with Standard CMOS Process December 6th, 2017

Memory Technology

Leti Breakthroughs Point Way to Significant Improvements in SoC Memories December 6th, 2017

Scientists make transparent materials absorb light December 1st, 2017

A material with promising properties: Konstanz scientist synthesizes an important ferromagnetic semiconductor November 25th, 2017

Injecting electrons jolts 2-D structure into new atomic pattern: Berkeley Lab study is first to show potential of energy-efficient next-gen electronic memory October 13th, 2017

Discoveries

Sandia researchers make solid ground toward better lithium-ion battery interfaces: Reducing the traffic jam in batteries December 13th, 2017

Perking up and crimping the 'bristles' of polyelectrolyte brushes December 13th, 2017

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

Untangling DNA: Researchers filter the entropy out of nanopore measurements December 8th, 2017

Announcements

A new product to help combat mouldy walls, thanks to technology developed at the ICN2 December 14th, 2017

Sandia researchers make solid ground toward better lithium-ion battery interfaces: Reducing the traffic jam in batteries December 13th, 2017

Perking up and crimping the 'bristles' of polyelectrolyte brushes December 13th, 2017

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project