Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > New silver-based ink has applications in electronics, researchers say

Abstract:
A new ink developed by researchers at the University of Illinois allows them to write their own silver linings.

The ink, composed of silver nanoparticles, can be used in electronic and optoelectronic applications to create flexible, stretchable and spanning microelectrodes that carry signals from one circuit element to another. The printed microelectrodes can withstand repeated bending and stretching with minimal change in their electrical properties.

New silver-based ink has applications in electronics, researchers say

Champaign, IL | Posted on February 12th, 2009

In a paper to be published Feb. 12, by Science Express, the online version of the journal Science, Jennifer Lewis, the Thurnauer Professor of Materials Science and Engineering and director of the university's Frederick Seitz Materials Research Laboratory, and her collaborators demonstrate patterned silver microelectrodes by omnidirectional printing of concentrated nanoparticle inks with minimum widths of about 2 microns on semiconductor, plastic and glass substrates.

"Unlike inkjet or screen printing, our approach enables the microelectrodes to be printed out-of-plane, allowing them to directly cross pre-existing patterned features through the formation of spanning arches," Lewis said. "Typically, insulating layers or bypass electrode arrays are required in conventional layouts."

To produce printed features, the researchers first prepare a highly concentrated silver nanoparticle ink. The ink is then extruded through a tapered cylindrical nozzle attached to a three-axis micropositioning stage, which is controlled by computer-aided design software.

When printed, the silver nanoparticles are not yet bonded together. The bonding process occurs when the printed structure is heated to 150 degrees Celsius or higher. During thermal annealing, the nanoparticles fuse into an interconnected structure. Because of the modest processing temperatures required, the printed features are compatible with flexible, organic substrates.

To demonstrate the versatility of the printing process, the researchers patterned both planar and out-of-plane silver microelectrodes; produced spanning interconnects for solar microcell and light-emitting-diode arrays; and bonded silver wires to fragile,
three-dimensional devices.

"Unlike conventional techniques, our approach allows fine silver wires to be bonded to delicate devices using minimal contact pressure," said postdoctoral researcher Bok Yeop Ahn, the lead author of the paper.

"Our approach is capable of creating highly integrated systems from diverse classes of electronic materials on a broad range of substrates," said graduate student Eric Duoss, a co-author of the paper. "Omnidirectional printing overcomes some of the design constraints that have limited the potential of printed electronics.

In addition to Lewis, Ahn and Duoss, the paper's co-authors include chemistry professor Ralph Nuzzo and materials science and engineering professor John Rogers, as well as members of their research groups.

The work was funded by the U.S. Department of Energy.

####

For more information, please click here

Contacts:
James E. Kloeppel
Physical Sciences Editor
217-244-1073


Jennifer Lewis
217-244-4973

Copyright © University of Illinois at Urbana-Champaign

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Graphene is strong, but is it tough? Berkeley Lab scientists find that polycrystalline graphene is not very resistant to fracture February 7th, 2016

Lithium battery catalyst found to harm key soil microorganism February 7th, 2016

Scientists take key step toward custom-made nanoscale chemical factories: Berkeley Lab researchers part of team that creates new function in tiny protein shell structures February 6th, 2016

Discovery of the specific properties of graphite-based carbon materials February 6th, 2016

Chip Technology

Organic crystals allow creating flexible electronic devices: The researchers from the Faculty of Physics of the Moscow State University have grown organic crystals that allow creating flexible electronic devices February 5th, 2016

Scientists guide gold nanoparticles to form 'diamond' superlattices: DNA scaffolds cage and coax nanoparticles into position to form crystalline arrangements that mimic the atomic structure of diamond February 4th, 2016

Polar vortices observed in ferroelectric: New state of matter holds promise for ultracompact data storage and processing February 4th, 2016

Electrons and liquid helium advance understanding of zero-resistance: Study of electrons on liquid helium systems sheds light on zero-resistance phenomenon in semiconductors February 2nd, 2016

Discoveries

Graphene is strong, but is it tough? Berkeley Lab scientists find that polycrystalline graphene is not very resistant to fracture February 7th, 2016

Lithium battery catalyst found to harm key soil microorganism February 7th, 2016

Scientists take key step toward custom-made nanoscale chemical factories: Berkeley Lab researchers part of team that creates new function in tiny protein shell structures February 6th, 2016

Discovery of the specific properties of graphite-based carbon materials February 6th, 2016

Announcements

Graphene is strong, but is it tough? Berkeley Lab scientists find that polycrystalline graphene is not very resistant to fracture February 7th, 2016

Lithium battery catalyst found to harm key soil microorganism February 7th, 2016

Scientists take key step toward custom-made nanoscale chemical factories: Berkeley Lab researchers part of team that creates new function in tiny protein shell structures February 6th, 2016

Discovery of the specific properties of graphite-based carbon materials February 6th, 2016

Printing/Lithography/Inkjet/Inks

Teijin to Participate in Nano Tech 2016 January 21st, 2016

New bimetallic alloy nanoparticles for printed electronic circuits: Production of oxidation-resistant copper alloy nanoparticles by electrical explosion of wire for printed electronics January 5th, 2016

Photonic “sintering” may create new solar, electronics manufacturing technologies December 1st, 2015

Screen Printable Functionalised Graphene Ink November 3rd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic