Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > New silver-based ink has applications in electronics, researchers say

Abstract:
A new ink developed by researchers at the University of Illinois allows them to write their own silver linings.

The ink, composed of silver nanoparticles, can be used in electronic and optoelectronic applications to create flexible, stretchable and spanning microelectrodes that carry signals from one circuit element to another. The printed microelectrodes can withstand repeated bending and stretching with minimal change in their electrical properties.

New silver-based ink has applications in electronics, researchers say

Champaign, IL | Posted on February 12th, 2009

In a paper to be published Feb. 12, by Science Express, the online version of the journal Science, Jennifer Lewis, the Thurnauer Professor of Materials Science and Engineering and director of the university's Frederick Seitz Materials Research Laboratory, and her collaborators demonstrate patterned silver microelectrodes by omnidirectional printing of concentrated nanoparticle inks with minimum widths of about 2 microns on semiconductor, plastic and glass substrates.

"Unlike inkjet or screen printing, our approach enables the microelectrodes to be printed out-of-plane, allowing them to directly cross pre-existing patterned features through the formation of spanning arches," Lewis said. "Typically, insulating layers or bypass electrode arrays are required in conventional layouts."

To produce printed features, the researchers first prepare a highly concentrated silver nanoparticle ink. The ink is then extruded through a tapered cylindrical nozzle attached to a three-axis micropositioning stage, which is controlled by computer-aided design software.

When printed, the silver nanoparticles are not yet bonded together. The bonding process occurs when the printed structure is heated to 150 degrees Celsius or higher. During thermal annealing, the nanoparticles fuse into an interconnected structure. Because of the modest processing temperatures required, the printed features are compatible with flexible, organic substrates.

To demonstrate the versatility of the printing process, the researchers patterned both planar and out-of-plane silver microelectrodes; produced spanning interconnects for solar microcell and light-emitting-diode arrays; and bonded silver wires to fragile,
three-dimensional devices.

"Unlike conventional techniques, our approach allows fine silver wires to be bonded to delicate devices using minimal contact pressure," said postdoctoral researcher Bok Yeop Ahn, the lead author of the paper.

"Our approach is capable of creating highly integrated systems from diverse classes of electronic materials on a broad range of substrates," said graduate student Eric Duoss, a co-author of the paper. "Omnidirectional printing overcomes some of the design constraints that have limited the potential of printed electronics.

In addition to Lewis, Ahn and Duoss, the paper's co-authors include chemistry professor Ralph Nuzzo and materials science and engineering professor John Rogers, as well as members of their research groups.

The work was funded by the U.S. Department of Energy.

####

For more information, please click here

Contacts:
James E. Kloeppel
Physical Sciences Editor
217-244-1073


Jennifer Lewis
217-244-4973

Copyright © University of Illinois at Urbana-Champaign

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

NREL Announces New Center Directors to lead R&D, Analysis Efforts September 30th, 2014

Yale University and Leica Microsystems Partner to Establish Microscopy Center of Excellence: Yale Welcomes Scientists to Participate in Core Facility Opening and Super- Resolution Workshops October 20 Through 31, 2014 September 30th, 2014

Speed at its limits September 30th, 2014

Research mimics brain cells to boost memory power September 30th, 2014

Chip Technology

Speed at its limits September 30th, 2014

Research mimics brain cells to boost memory power September 30th, 2014

'Pixel' engineered electronics have growth potential: Rice, Oak Ridge, Vanderbilt, Penn scientists lead creation of atom-scale semiconducting composites September 29th, 2014

Future flexible electronics based on carbon nanotubes: Study in Applied Physics Letters show how to improve nanotube transistor and circuit performance with fluoropolymers September 23rd, 2014

Discoveries

Research mimics brain cells to boost memory power September 30th, 2014

Ad-REIC vaccine: A magic bullet for cancer treatment September 30th, 2014

New Topical Hemostatic Agent: Neutral Self-Assembling Peptide Hydrogel September 30th, 2014

Chemical interactions between silver nanoparticles and thiols: A comparison of mercaptohexanol again September 30th, 2014

Announcements

Park Systems Announces Outsourced Analytical Services Including AFM Surface Imaging, Data Analysis and Interpretation September 30th, 2014

Ad-REIC vaccine: A magic bullet for cancer treatment September 30th, 2014

New Topical Hemostatic Agent: Neutral Self-Assembling Peptide Hydrogel September 30th, 2014

Chemical interactions between silver nanoparticles and thiols: A comparison of mercaptohexanol again September 30th, 2014

Printing/Lithography/Inkjet/Inks

'Greener,' low-cost transistor heralds advance in flexible electronics September 24th, 2014

RMIT delivers $30m boost to micro and nano-tech August 26th, 2014

SouthWest NanoTechnologies Appoints Matteson-Ridolfi for U.S. Distribution of its SMW™ Specialty Multiwall Carbon Nanotubes August 13th, 2014

An Inkjet-Printed Field-Effect Transistor for Label-Free Biosensing August 11th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE