Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

android tablet pc

Home > Press > 'Science:' Novel quantum effect directly observed and explained

Research team succeeds in observing electrons in the quantum spin Hall state; Material suitable for spin sources and quantum computing in information processing

'Science:' Novel quantum effect directly observed and explained

Germany | Posted on February 12th, 2009

An international research team has succeeded in gaining an in-depth insight into an unusual phenomenon, as reported in the current edition of the high-impact journal "Science". The researchers succeeded for the first time in directly measuring the spin of electrons in a material that exhibits the quantum spin Hall effect, which was theoretically predicted in 2004 and first observed in 2007. Astonishingly, the spin currents flow without any external stimulus as a result of the internal structure of the material. The flow of information is loss-free, even for slight irregularities. This paves the way towards fault-tolerant quantum computers and towards a source of spin currents.

The spin is a quantum-mechanical property of elementary particles and as a rule it occurs in two variations. This is what makes it suitable for use as a binary information carrier. In hard disk drives, for example, spins are already being used to store digital information.

In 2007, physicists from Germany and the USA observed a new phenomenon that could make it possible to transport and electrically manipulate information in future storage media almost loss-free - the quantum spin Hall effect. The discovery was hailed by the high-impact journal "Science" as one of the ten most important scientific breakthroughs of 2007.

The first study that succeeded in directly observing the spin of flowing particles was published this week in "Science" by an international research team, which included Dr. Gustav Bihlmayer from Forschungszentrum Jülich, member of the Helmholtz Association. Until now, the quantum spin Hall effect could only be indirectly proven.

"We were able to show for the first time that two spin currents flow in opposite directions in the edge region of an alloy of bismuth and antimony. An external energy supply is not required; losses cannot occur," explained Dr. Gustav Bihlmayer from the Jülich Institute of Solid State Research. The causes of this astonishing phenomenon are interactions within the material. Of particular interest to materials scientists is the fact that imperfections in the material do not impair the spin currents. "This means that materials known as topological materials have spin currents that can be manipulated electrically and are therefore suitable for use as spin sources. They could even pave the way towards fault-tolerant quantum computers," said Bihlmayer. "Our process will make it possible to test the suitability of materials for this purpose in the future."

The current study makes use of theoretical calculations and photoelectron spectroscopy. The photons in a synchrotron beam cause electrons to be emitted from the material surface. The energy and momentum distribution, as well as the spin of the particles, can be used to derive concrete information on the occurrence of the quantum spin Hall effect. Previous methods were based on measurements of the conductivity in the materials at variable voltages.

Spins for data processing

Spins are a hot topic in research. Physicists and nanoelectricians have high hopes for what is known as spin electronics. Spin electronics does not just exploit the electric charge of electrons and nuclei but also their spin, and should therefore lead to the development of new approaches for the processing and coding of information in information processing. Faster, smaller and more energy-efficient computers could thus become a reality, as could completely new components capable of performing a number of different functions such as storage, logic and communication. One of the most prominent ideas is that of the quantum computer. For spin-electronic concepts, scientists conducting basic research are desperately searching for new materials and phenomena that will make it possible to control both spin orientation and spin flow.

Original publication
Science, 13 February 2009, vol. 323, issue 5916,
Observation of unconventional quantum spin textures in topologically ordered materials, D. Hsieh, Y. Xia, L. Wray, D. Qian, A. Pal, J.H. Dil, F. Meier, J. Osterwalder, G. Bihlmayer, C.L. Kane, Y.S. Hor, R.J. Cava, M.Z. Hasan


For more information, please click here

Erhard Lachmann


Copyright © Helmholtz Association of German Research Centres

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

'Stealth' nanoparticles could improve cancer vaccines October 1st, 2014

Stressed Out: Research Sheds New Light on Why Rechargeable Batteries Fail October 1st, 2014

New Absorber Will Lead to Better Biosensor: Biosensors are more sensitive and able to detect smaller changes in the environment October 1st, 2014

Graphene chips are close to significant commercialization October 1st, 2014

Quantum Computing

Excitonic Dark States Shed Light on TMDC Atomic Layers: Berkeley Lab Discovery Holds Promise for Nanoelectronic and Photonic Applications September 11th, 2014

Secure Computing for the ‘Everyman': Quantum computing goes to market in tech transfer agreement with Allied Minds September 2nd, 2014

New synthesis method may shape future of nanostructures, clean energy: Findings advance efficient solar spliting of water into hydrogen fuel September 2nd, 2014

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014


Breakthrough in ALD-graphene by Picosun technology October 1st, 2014

Novel approach to magnetic measurements atom-by-atom October 1st, 2014

Nanoparticles Accumulate Quickly in Wetland Sediment: Aquatic food chains might be harmed by molecules "piggybacking" on carbon nanoparticles October 1st, 2014

'Stealth' nanoparticles could improve cancer vaccines October 1st, 2014


'Stealth' nanoparticles could improve cancer vaccines October 1st, 2014

Stressed Out: Research Sheds New Light on Why Rechargeable Batteries Fail October 1st, 2014

New Absorber Will Lead to Better Biosensor: Biosensors are more sensitive and able to detect smaller changes in the environment October 1st, 2014

Graphene chips are close to significant commercialization October 1st, 2014

Quantum nanoscience

Rice launches Center for Quantum Materials: RCQM will immerse global visitors in cross-disciplinary research September 30th, 2014

Big Results Require Big Ambitions: Three young UCSB faculty receive CAREER awards from the National Science Foundation September 18th, 2014

Elusive Quantum Transformations Found Near Absolute Zero: Brookhaven Lab and Stony Brook University researchers measured the quantum fluctuations behind a novel magnetic material's ultra-cold ferromagnetic phase transition September 15th, 2014

Layered graphene sandwich for next generation electronics September 8th, 2014

The latest news from around the world, FREE

  Premium Products
Only the news you want to read!
 Learn More
University Technology Transfer & Patents
 Learn More
Full-service, expert consulting
 Learn More

Nanotechnology Now Featured Books


The Hunger Project

© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE