Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Intel to Invest $7 Billion in U.S. Manufacturing Facilities: 2-Year Plan to Focus on Leading-Edge Technologies

Abstract:
Intel President and CEO Paul Otellini today announced the company would spend $7 billion over the next two years to build advanced manufacturing facilities in the United States. The investment funds deployment of Intel's industry-leading 32 nanometer (nm) manufacturing technology that will be used to build faster, smaller chips that consume less energy.

Intel to Invest $7 Billion in U.S. Manufacturing Facilities: 2-Year Plan to Focus on Leading-Edge Technologies

Washington, DC | Posted on February 12th, 2009

The commitment represents Intel's largest-ever investment for a new manufacturing process.

"We're investing in America to keep Intel and our nation at the forefront of innovation," Otellini said. "These manufacturing facilities will produce the most advanced computing technology in the world. The capabilities of our 32nm factories are truly extraordinary, and the chips they produce will become the basic building blocks of the digital world, generating economic returns far beyond our industry."

Intel's investment will be made at existing manufacturing sites in Oregon, Arizona and New Mexico and will support approximately 7,000 high-wage, high-skill jobs at those locations -- part of a total Intel workforce of more than 45,000 in the U.S. Intel, while generating more than 75 percent of its sales overseas, carries out roughly 75 percent of its semiconductor manufacturing in the U.S. At the same time, about 75 percent of the company's R&D spending and capital investments are also made in the U.S.

The technology used in Intel's manufacturing process builds chip circuitry 32nm (32/billionth of a meter or about 1/millionth of an inch) across - incredibly small, atomic level structures.

The first Intel processors to be built using this technology are codenamed "Westmere" and will initially be used in desktop and mobile mainstream systems. Westmere combines Intel's latest high-performance micro-architecture ("Nehalem") with graphics capability integrated into the processor. As a result, computer manufacturers will be able to increase performance and simplify system manufacturing compared to current systems. Outstanding 32nm manufacturing and product health are enabling Intel to accelerate the Westmere production ramp beginning in 2009. Additional 32nm products will follow in 2010.

Otellini will discuss the importance of new technology and investing for the future at 9 a.m. EST today during a speech at the Economic Club of Washington, DC. In addition, Intel executives will be on-hand at an event beginning at 10 a.m. PST in San Francisco to provide the world's first public demonstration of a fully functional 32nm based device - the first Westmere processor. Additional details on these events are available at www.intel.com/pressroom.

####

About Intel Corporation
Intel (NASDAQ:INTC), the world leader in silicon innovation, develops technologies, products and initiatives to continually advance how people work and live. Additional information about Intel is available at www.intel.com/pressroom and blogs.intel.com.

Intel (and other marks, if applicable) is a trademark of Intel Corporation in the United States and other countries.

*Other names and brands may be claimed as the property of others.

For more information, please click here

Contacts:
Intel Corporation
Tom Beermann
408-765-6855


Tom Waldrop
408-921-6705

Copyright © Business Wire 2009

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Copper shines as flexible conductor August 29th, 2014

Leading European communications companies and research organizations have launched an EU project developing the future 5th Generation cellular mobile networks August 28th, 2014

Ultra-Low Frequency Vibration Isolation Stabilizes Scanning Tunneling Microscopy at UCLA’s Nano-Research Group August 28th, 2014

Openings/New facilities/Groundbreaking/Expansion

RMIT delivers $30m boost to micro and nano-tech August 26th, 2014

SEMATECH and Newly Merged SUNY CNSE/SUNYIT Launch New Patterning Center to Further Advance Materials Development: Center to Provide Access to Critical Tools that Support Semiconductor Technology Node Development August 7th, 2014

Oxford Instruments Asylum Research Opens an Atomic Force Microscopy Demonstration Lab in Mumbai, India July 21st, 2014

Sono-Tek Corporation Announces New Clean Room Rated Laboratory Facility in China July 18th, 2014

Chip Technology

Fonon Announces 3D Metal Sintering Technology: Emerging Additive Nano Powder Manufacturing Technology August 28th, 2014

Scientists craft atomically seamless, thinnest-possible semiconductor junctions August 26th, 2014

RMIT delivers $30m boost to micro and nano-tech August 26th, 2014

Competition for Graphene: Berkeley Lab Researchers Demonstrate Ultrafast Charge Transfer in New Family of 2D Semiconductors August 26th, 2014

Announcements

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Copper shines as flexible conductor August 29th, 2014

Novel 'butterfly' molecule could build new sensors, photoenergy conversion devices August 28th, 2014

New technique uses fraction of measurements to efficiently find quantum wave functions August 28th, 2014

Industrial

Iranians Find Novel Method for Processing Highly Pure Ceramic Nanoparticles August 12th, 2014

PerkinElmer to Display Innovative Detection and Informatics Offerings at ACS National Meeting & Exposition Detection, Data Visualization and Analytics for Chemistry Professionals August 8th, 2014

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

University of Manchester selects Anasys AFM-IR for coatings and corrosion research July 30th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE