Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > How Do You Build a Synthetic Brain?: USC electrical engineers attempt to create cortical neurons that can communicate with each other.

Professor Alice Parker, left, discusses the animation of a synaptic connector with graduate students Chih-Chieh Hsu, center, and Jonathan Joshi.

Photo/Diane Ainsworth
Professor Alice Parker, left, discusses the animation of a synaptic connector with graduate students Chih-Chieh Hsu, center, and Jonathan Joshi.

Photo/Diane Ainsworth

Abstract:
Nanocarbon modeling may be the next step toward emulating human brain function. That's the focus of USC electrical engineering professor Alice Parker's "synthetic cortex" study funded by the National Science Foundation.

Parker and co-principal investigator Chongwu Zhou, both of the USC Viterbi School's Ming Hsieh Department of Electrical Engineering, have teamed up on the "BioRC (Biomimetic Real-Time Cortex) Project," which has set out to create nanocarbon brain neurons that can talk to each other.

How Do You Build a Synthetic Brain?: USC electrical engineers attempt to create cortical neurons that can communicate with each other.

Los Angeles, CA | Posted on February 10th, 2009

The research team includes USC Viterbi School electrical engineering graduate students Jonathan Joshi, Chih-Chieh Hsu, Adi Azar, Matthew Walker, Ko-Chung Tseng, Ben Raskob, Chuan Wang, Yoon Sik Cho, Changsoo Jeong and Jason Mahvash.

The team is studying the behavior of cortical neurons - what makes them fire and send signals through synaptic connectors to other neurons in the human cortex - as well as the neurons' "plasticity," or ability to learn and remember.

Each time a neuron fires, it sends an electro-chemical spark through thousands of other neurons at speeds of up to 200 miles per hour. But with approximately 100 billion neurons in the human cortex and approximately 60 trillion synaptic connections, the brain is massively interconnected, Parker said. That makes the task of unraveling a neuron's electrical circuitry quite complicated.

"The brain is kind of like a biochemical factory, operating in a sphere that you can't stretch out on integrated circuits and circuit boards in order to emulate all of its electrical activity," she said. "The connectivity is too great and too many delays are introduced. We had to turn to nanotechnology to build something three-dimensionally, so that eventually we'll be able to emulate how the neurons fire and activate others along a specific path within that sphere."

According to Joshi, who has engineered the circuit design for artificial synapses that learn, "This is a big departure from some previous synthetic brain projects, which attempted to emulate neural behavior with electrical signals using conventional multiprocessors.

"Nanocarbon modeling solves problems such as the sheer physical size in building a section of synthetic cortex, the cost of expensive electronics that have been required in the past to build these structures and then the cost of powering them, since the brain never shuts off."

Until quite recently, the size and cost of available electronics made construction of complex brain-like structures totally impractical, Parker said.

The team already has designed and simulated the transistor circuits for a single synapse, said Hsu, a senior member of the team and Ph.D. student in electrical engineering. In addition, a complementary metal oxide semiconductor chip that will be used to validate the concepts is about to be fabricated. Now it's time to connect the structure to another synapse and study neural interconnectivity. By the end of the semester, she hopes to have "several synthetic neurons talking to each other."

Ultimately, the researchers hope to answer one question: Will science ever be able to construct an artificial brain of reasonable size and cost that exhibits almost real-time behavior?

"We really don't know if we can yet, despite all of the press that you've seen claiming how close we are to that," Parker said. "The human cortex is massively interconnected and the connections are always changing. That's always been one of the biggest hurdles in trying to simulate neural functioning. But as technologies become smaller and less expensive, there is a possibility of constructing neural structures on the scale of the human brain."

A lot is riding on it, she added. Autonomous vehicle navigation, identity determination, robotic manufacturing and medical diagnostics are engineering challenges that could benefit from technological solutions that involve artificial neural structures.

And in medicine, the stakes are even higher.

"Researchers have already built experimental cochlear implants that are able to restore some hearing in the deaf and new vision systems that can restore some sight to the blind, but what we're working on now is what you'll see 30 years in the future," Parker said. "This is work that could revolutionize neural prosthetics, for one thing, and give us some pretty amazing biomimetic devices."

The project also involves collaborators Kang Wang, Alex Khitun and Mary Eshaghian-Wilner at UCLA, Philip Wong at Stanford University and Jie Deng at IBM, as well as neuroscience faculty members at USC.

####

For more information, please click here

Copyright © University of Southern California

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Graphene leans on glass to advance electronics: Scientists' use of common glass to optimize graphene's electronic properties could improve technologies from flat screens to solar cells February 12th, 2016

A metal that behaves like water: Researchers describe new behaviors of graphene February 12th, 2016

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Silicon chip with integrated laser: Light from a nanowire: Nanolaser for information technology February 12th, 2016

Nanomedicine

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

SLAC X-ray laser turns crystal imperfections into better images of important biomolecules: New method could remove major obstacles to studying structures of complex biological machines February 11th, 2016

Discoveries

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Announcements

Graphene leans on glass to advance electronics: Scientists' use of common glass to optimize graphene's electronic properties could improve technologies from flat screens to solar cells February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Artificial Intelligence

NSS Pays Tribute to Late NSS Governor Dr. Marvin Minsky, A Pioneer in Artificial Intelligence February 11th, 2016

Bill Gates named 2015 Lifeboat Foundation Guardian Award Winner January 3rd, 2016

Lifeboat Foundation launches 3 books December 16th, 2015

Imitating synapses of the human brain could lead to smarter electronics November 15th, 2015

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic