Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > New technique boosts protein NMR imaging speeds

Abstract:
Solid-state nuclear magnetic resonance, or SSNMR, is a valuable tool to image and analyze the chemical makeup of proteins and other biomolecules. But the imaging process is time-consuming and requires large amounts of costly isotope-labeled sample for study.

New technique boosts protein NMR imaging speeds

Chicago | Posted on February 10th, 2009

Yoshitaka Ishii, associate professor of chemistry at the University of Illinois at Chicago, believes he has found a quicker and more efficient approach to using SSNMR called paramagnetic relaxation-assisted condensed data collection, or PACC. Details of the approach are reported in the March issue of Nature Methods (online Feb. 8.)

Ishii and his associates found a way of increasing sensitivity of SSNMR by doping samples at varying concentrations with the paramagnetic copper-acid solution Cu-EDTA, a chemical used in many industrial applications. That made the study samples more active transponders, providing strong signals and detailed spectral information with minimal downtime.

"With SSNMR, we collect the signal responses but then have to wait for the SSNMR system to recycle, which takes up to three seconds," said Ishii. "You have to do this hundreds of times. And during most of that time, you're basically doing nothing. By our approach, we've reduced that waiting period by up to 20 times."

Ishii said the slow process of gathering spectral signal information has been the "de facto standard for over 20 years." He found it shocking how much time is spent just waiting for results using traditional SSNMR.

The chemists also boosted the SSNMR efficiency by using a spinning speed of 40 kilohertz, instead of the usual 10 kHz, and doing a fast recycling of low radio frequency field power sequences, which minimizes the amount of irradiation heat surrounding the study sample.

"The radio frequency irradiation process typically increases temperature, but we worked it so we could get a signal without strong irradiation, which could fry out a protein," said Ishii.

Ishii and his group studied various types of molecules using this new approach, including the amyloid fibrils often associated with Alzheimer's disease, larger globular proteins and cytoskeleton proteins. The new approach worked well with each type.

The doping solution they added to enhance the sensitivity of samples did not change the chemical structure of proteins studied. Ishii said the approach also enabled his group to get useful spectral signals using much smaller samples.

"We often need samples as large as 10 microliters, but with this approach we can use as little as one microliter or less," he said. "With protein structure work, preparing samples is a major bottleneck, which limits our ability to analyze it. This approach opens up the possibility for more difficult structure determination work."

Ishii hopes the PACC approach may be enhanced to achieve even greater SSNMR sensitivity, but notes the technique, as presently tested, should allow study of molecular structural features that are currently difficult to obtain using other laboratory methods.

The study's lead author is Nalinda Wickramasinghe, Ishii's former UIC doctoral student. Other authors include Leslie Wo-Mei Fung, professor of chemistry at UIC, and Ago Samoson of the National Institute of Chemical Physics and Biophysics in Tallinn, Estonia and the University of Warwick in Coventry, U.K.

Funding for the work came from the National Science Foundation, the National Institutes of Health, the Dreyfus Foundation and the Alzheimer's Association.

####

For more information, please click here

Contacts:
Paul Francuch

312-996-3457

Copyright © University of Illinois at Chicago

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Phagraphene, a 'relative' of graphene, discovered September 2nd, 2015

A marine creature's magic trick explained: Crystal structures on the sea sapphire's back appear differently depending on the angle of reflection September 2nd, 2015

National Science Foundation Selects SUNY Poly CNSE for Expanded $2.1M Northeast Advanced Technological Education Center: NSF Center Locates to NanoCollege in Support of Flourishing Tech Industry in NYS September 1st, 2015

RUSNANOPRIZE Directorate Announces New Deadline for Nominations Submission – September 11, 2015 September 1st, 2015

Imaging

Nanolab Technologies LEAPS Forward with High-Performance Analysis Services to the World: Nanolab Orders Advanced Local Electrode Atom Probe (LEAP®) Microscope from CAMECA Unit of AMETEK Materials Analysis Division August 27th, 2015

50 Years of Scanning Electron Microscopy from ZEISS: ZEISS celebrates the birth of the first commercial scanning electron microscope in 1965 August 26th, 2015

Announcing Oxford Instruments and School of Physics signing a Memorandum of Understanding August 26th, 2015

Kwansei Gakuin University in Hyogo, Japan, uses Raman microscopy to study crystallographic defects in silicon carbide wafers August 25th, 2015

Govt.-Legislation/Regulation/Funding/Policy

A marine creature's magic trick explained: Crystal structures on the sea sapphire's back appear differently depending on the angle of reflection September 2nd, 2015

Sustainable nanotechnology center September 1st, 2015

National Science Foundation Selects SUNY Poly CNSE for Expanded $2.1M Northeast Advanced Technological Education Center: NSF Center Locates to NanoCollege in Support of Flourishing Tech Industry in NYS September 1st, 2015

An engineered surface unsticks sticky water droplets August 31st, 2015

Discoveries

Phagraphene, a 'relative' of graphene, discovered September 2nd, 2015

A marine creature's magic trick explained: Crystal structures on the sea sapphire's back appear differently depending on the angle of reflection September 2nd, 2015

Hot electrons point the way to perfect light absorption: Physicists study how to achieve perfect absorption of light with the help of rough ultrathin films September 1st, 2015

Using DNA origami to build nanodevices of the future September 1st, 2015

Announcements

Phagraphene, a 'relative' of graphene, discovered September 2nd, 2015

A marine creature's magic trick explained: Crystal structures on the sea sapphire's back appear differently depending on the angle of reflection September 2nd, 2015

Waste coffee used as fuel storage: Scientists have developed a simple process to treat waste coffee grounds to allow them to store methane September 2nd, 2015

Nanotech could rid cattle of ticks, with less collateral damage September 1st, 2015

Tools

Nanolab Technologies LEAPS Forward with High-Performance Analysis Services to the World: Nanolab Orders Advanced Local Electrode Atom Probe (LEAP®) Microscope from CAMECA Unit of AMETEK Materials Analysis Division August 27th, 2015

Nanometrics to Participate in the Citi 2015 Global Technology Conference August 26th, 2015

50 Years of Scanning Electron Microscopy from ZEISS: ZEISS celebrates the birth of the first commercial scanning electron microscope in 1965 August 26th, 2015

Announcing Oxford Instruments and School of Physics signing a Memorandum of Understanding August 26th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic