Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Carbon nanotube avalanche process nearly doubles current

Photo by L. Brian Stauffer
Electrical and computer engineering professor Eric Pop, from left, worked with undergraduate Yang Zhao and graduate student Albert Liao, both in ECE, to demonstrate a remarkable increase in the current-carrying capacity of carbon nanotubes.
Photo by L. Brian Stauffer
Electrical and computer engineering professor Eric Pop, from left, worked with undergraduate Yang Zhao and graduate student Albert Liao, both in ECE, to demonstrate a remarkable increase in the current-carrying capacity of carbon nanotubes.

Abstract:
By pushing carbon nanotubes close to their breaking point, researchers at the University of Illinois have demonstrated a remarkable increase in the current-carrying capacity of the nanotubes, well beyond what was previously thought possible.

Carbon nanotube avalanche process nearly doubles current

Champaign, IL | Posted on February 9th, 2009

The researchers drove semiconducting carbon nanotubes into an avalanche process that carries more electrons down more paths, similar to the way a multilane highway carries more traffic than a one-lane road.

"Single-wall carbon nanotubes are already known to carry current densities up to 100 times higher than the best metals like copper," said Eric Pop, a professor of electrical and computer engineering at the U. of I. "We now show that semiconducting nanotubes can carry nearly twice as much current as previously thought."

As reported in the journal Physical Review Letters, the researchers found that at high electric fields (10 volts per micron), energetic electrons and holes can create additional electron-hole pairs, leading to an avalanche effect where the free carriers multiply and the current rapidly increases until the nanotube breaks down.

The sharp increase in current, Pop said, is due to the onset of avalanche impact ionization, a phenomenon observed in certain semiconductor diodes and transistors at high electric fields, but not previously seen in nanotubes.

While the maximum current carrying capacity for metallic nanotubes has been measured at about 25 microamps, the maximum current carrying capacity for semiconducting nanotubes is less established. Previous theoretical predictions suggested a similar limit for single-band conduction in semiconducting nanotubes.

To study current behavior, Pop, graduate student Albert Liao and undergraduate student Yang Zhao first grew single-wall carbon nanotubes by chemical vapor deposition from a patterned iron catalyst. Palladium contacts were used for measurement purposes. The researchers then pushed the nanotubes close to their breaking point in an oxygen-free environment.

"We found that the current first plateaus near 25 microamps, and then sharply increases at higher electric fields," said Pop, who also is affiliated with the Beckman Institute and the Micro and Nanotechnology Laboratory at the U. of I. "We performed repeated measurements, obtaining currents of up to 40 microamps, nearly twice those of previous reports."

By inducing very high electric fields in the nanotubes, the researchers drove some of the charge carriers into nearby subbands, as part of the avalanche process. Instead of being in just one "lane," the electrons and holes could occupy several available lanes, resulting in much greater current.

The avalanche process (which cannot be observed in metallic carbon nanotubes because an energy gap is required for electron-hole multiplication) offers additional functionality to semiconducting nanotubes, Pop said. "Our results suggest that avalanche-driven devices with highly nonlinear turn-on characteristics can be fashioned from semiconducting single wall nanotubes."

Funding was provided by the National Science Foundation and the National Institute of Standards and Technology through the Nanoelectronics Research Initiative.

####

For more information, please click here

Contacts:
James E. Kloeppel
Physical Sciences Editor
217-244-1073


Eric Pop
217-244-2070

Copyright © University of Illinois at Urbana-Champaign

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Feynman Prize Winners Announced! April 26th, 2015

New ASTM Standards Will Help Educate Present and Future Nanotechnology Workforces April 26th, 2015

Heat makes electrons’ spin in magnetic superconductors April 26th, 2015

QD Vision Wins 2015 Bronze Edison Award for Color IQ™ Quantum Dot Technology April 26th, 2015

Govt.-Legislation/Regulation/Funding/Policy

SEFCU, SUNY Poly CNSE Announce Winning Student-Led Teams in the 6th Annual $500,000 New York Business Plan Competition April 25th, 2015

Northwestern scientists develop first liquid nanolaser: Technology could lead to new way of doing 'lab on a chip' medical diagnostics April 25th, 2015

ORNL reports method that takes quantum sensing to new level April 23rd, 2015

Electron spin brings order to high entropy alloys April 23rd, 2015

Chip Technology

Surface matters: Huge reduction of heat conduction observed in flat silicon channels April 23rd, 2015

Drexel materials scientists putting a new spin on computing memory April 22nd, 2015

Printing Silicon on Paper, with Lasers April 21st, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Nanotubes/Buckyballs/Fullerenes

SouthWest NanoTechnologies CEO Dave Arthur to Speak at NanoBCA DC Roundtable on May 19 in Washington DC April 20th, 2015

How to maximize the superconducting critical temperature in a molecular superconductor: International team led by Tohoku University opens new route for discovering high Tc superconductors April 19th, 2015

Nanotubes with two walls have singular qualities: Rice University lab calculates unique electronic qualities of double-walled carbon nanotubes April 16th, 2015

MIT sensor detects spoiled meat: Tiny device could be incorporated into 'smart packaging' to improve food safety April 15th, 2015

Nanoelectronics

Surface matters: Huge reduction of heat conduction observed in flat silicon channels April 23rd, 2015

New class of 3D-printed aerogels improve energy storage April 22nd, 2015

‘Oxford Instruments Young Nanoscientist India Award 2015’ to Prof. Arindam Ghosh April 20th, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Discoveries

Heat makes electrons’ spin in magnetic superconductors April 26th, 2015

SEFCU, SUNY Poly CNSE Announce Winning Student-Led Teams in the 6th Annual $500,000 New York Business Plan Competition April 25th, 2015

Northwestern scientists develop first liquid nanolaser: Technology could lead to new way of doing 'lab on a chip' medical diagnostics April 25th, 2015

Fast and accurate 3-D imaging technique to track optically trapped particles April 24th, 2015

Announcements

Feynman Prize Winners Announced! April 26th, 2015

New ASTM Standards Will Help Educate Present and Future Nanotechnology Workforces April 26th, 2015

Heat makes electrons’ spin in magnetic superconductors April 26th, 2015

QD Vision Wins 2015 Bronze Edison Award for Color IQ™ Quantum Dot Technology April 26th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project