Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > New plasma transistor could create sharper displays

Abstract:
By integrating a solid-state electron emitter and a microcavity plasma device, researchers at the University of Illinois have created a plasma transistor that could be used to make lighter, less expensive and higher resolution flat-panel displays.

"The new device is capable of controlling both the plasma conduction current and the light emission with an emitter voltage of 5 volts or less," said Gary Eden, a professor of electrical and computer engineering, and director of the Laboratory for Optical Physics and Engineering at the U. of I.

New plasma transistor could create sharper displays

Champaign, IL | Posted on February 5th, 2009

At the heart of the plasma transistor is a microcavity plasma, an electronic-photonic device in which an electrically charged gas (a plasma) is contained within a microscopic cavity. Power is supplied by two electrodes at voltages of up to 200 volts.

Eden and graduate student Kuo-Feng (Kevin) Chen fabricated the plasma transistor from copper-clad laminate into which a microcavity 500 microns in diameter was produced by standard photolithographic techniques. The solid-state electron emitter was made from a silicon wafer, topped with a thin layer of silicon dioxide.

The microcavity is approximately the diameter of a human hair, and is filled with a small amount of gas. When excited by electrons, atoms in the plasma radiate light. The color of light depends on what gas is placed in the microcavity. Neon emits red light, for example, and argon emits blue light.

Around the plasma is a thin boundary layer called the sheath. Within the sheath, electrical current is carried not by negatively charged electrons, but instead by positively charged ions. Much heavier than electrons and therefore harder to accelerate, the ions require a large electric field generated by a large voltage drop across the sheath.

The intense electric field within the plasma sheath also promotes electron transport, said Eden, who also is a researcher at the university's Coordinated Science Laboratory and at the Micro and Nanotechnology Laboratory. "By injecting electrons from the emitter into the sheath, we can significantly increase the flow of electrons through the plasma, which increases the plasma's conductivity and light emission."

While the microcavity plasma still requires up to 200 volts to emit light and conduct current, the current and light emission can be controlled by an electron emitter operating at 5 volts or less, Eden said. The current that is sent through the sheath to the bulk plasma determines how much current is carried by the two electrodes driving the microplasma.

In previous work, Eden's team created flat-panel plasma lamps out of two sheets of aluminum foil separated by a thin dielectric layer of clear aluminum oxide. More than 250,000 lamps can be packed into a single panel. And, because microcavity plasmas operate at atmospheric pressure, thick pieces of glass are not needed to seal them. The lightweight plasma panels are less than 1 millimeter thick.

"Being able to control each microcavity plasma independently could turn our plasma panel into a less expensive and higher resolution plasma display," Eden said. "The plasma transistor also could be used in applications where you want to use a small voltage to control a great deal of power."

Eden and Chen described the plasma transistor in the journal Applied Physics Letters. The researchers have applied for a patent.

The work was supported by the U.S. Air Force Office of Scientific Research.

####

For more information, please click here

Contacts:
James E. Kloeppel, Physical Sciences Editor

217-244-1073

Copyright © University of Illinois at Urbana-Champaign

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

University of Minnesota engineers make sound loud enough to bend light on a computer chip: Device could improve wireless communications systems November 28th, 2014

Study details laser pulse effects on behavior of electrons November 28th, 2014

Single-atom gold catalysts may offer path to low-cost production of fuel and chemicals November 28th, 2014

Production of Anticancer Drug from Nanofibers in Iran November 28th, 2014

Display technology/LEDs/SS Lighting/OLEDs

Spiraling light, nanoparticles and insights into life’s structure November 19th, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

QD Vision Wins Prestigious Presidential Green Chemistry Challenge Award from the U.S. Environmental Protection Agency October 16th, 2014

Beyond LEDs: Brighter, new energy-saving flat panel lights based on carbon nanotubes - Planar light source using a phosphor screen with highly crystalline single-walled carbon nanotubes (SWCNTs) as field emitters demonstrates its potential for energy-efficient lighting device October 14th, 2014

Govt.-Legislation/Regulation/Funding/Policy

University of Minnesota engineers make sound loud enough to bend light on a computer chip: Device could improve wireless communications systems November 28th, 2014

Single-atom gold catalysts may offer path to low-cost production of fuel and chemicals November 28th, 2014

Renishaw receives Queen's Award for spectroscopy developments November 25th, 2014

Vegetable oil ingredient key to destroying gastric disease bacteria: In mice, therapeutic nanoparticles dampen H. pylori bacteria and inflammation that lead to ulcers and gastric cancer November 25th, 2014

Discoveries

University of Minnesota engineers make sound loud enough to bend light on a computer chip: Device could improve wireless communications systems November 28th, 2014

Study details laser pulse effects on behavior of electrons November 28th, 2014

Production of Anticancer Drug from Nanofibers in Iran November 28th, 2014

The mysterious 'action at a distance' between liquid containers November 26th, 2014

Announcements

University of Minnesota engineers make sound loud enough to bend light on a computer chip: Device could improve wireless communications systems November 28th, 2014

Study details laser pulse effects on behavior of electrons November 28th, 2014

Single-atom gold catalysts may offer path to low-cost production of fuel and chemicals November 28th, 2014

Production of Anticancer Drug from Nanofibers in Iran November 28th, 2014

Patents/IP/Tech Transfer/Licensing

Dicerna Announces License Agreement with Tekmira to Advance Dicerna’s PH1 Development Program November 17th, 2014

First genetic-based tool to detect circulating cancer cells in blood: NanoFlares light up individual cells if breast cancer biomarker is present November 17th, 2014

Ki-Bum Lee Patents Technology To Advance Stem Cell Therapeutics November 13th, 2014

'Direct writing' of diamond patterns from graphite a potential technological leap November 5th, 2014

Military

University of Minnesota engineers make sound loud enough to bend light on a computer chip: Device could improve wireless communications systems November 28th, 2014

NRL Scientists Discover Novel Metamaterial Properties within Hexagonal Boron Nitride November 20th, 2014

Two sensors in one: Nanoparticles that enable both MRI and fluorescent imaging could monitor cancer, other diseases November 18th, 2014

Penn engineers efficiently 'mix' light at the nanoscale November 17th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More












ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE