Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Spin currents heat up: Long-range spin currents induced by heat herald a new era for spintronic applications

Figure 1: Schematic of the experimental setup for the spin Seebeck effect. A magnetic metal such as Ni81Fe19 is exposed to two different temperatures at its ends. With the magnetic magnetization (red arrow) in the plane of the device, a spin voltage results, so that spins of different orientation are at either ends of the sample. The spin voltage is measured through thin platinum (Pt) strips where the spin Hall effect (SHE) converts spin voltages into electric voltages.
Figure 1: Schematic of the experimental setup for the spin Seebeck effect. A magnetic metal such as Ni81Fe19 is exposed to two different temperatures at its ends. With the magnetic magnetization (red arrow) in the plane of the device, a spin voltage results, so that spins of different orientation are at either ends of the sample. The spin voltage is measured through thin platinum (Pt) strips where the spin Hall effect (SHE) converts spin voltages into electric voltages.

Abstract:
Modern electronics is based on the transport of electrons, generated by a difference in electric voltage. In a bid for faster and smaller electronic devices, researchers have turned to the spin of electrons, or spintronics. However, sustaining spin currents has proven difficult. Now researchers from the RIKEN Advanced Science Institute in Wako with scientists from Keio University, Yokohoma, and Tohoku University, Sendai, have—for the first time—observed the so-called spin Seebeck effect, which is able to generate pure spin currents across macroscopic distances.

Spin currents heat up: Long-range spin currents induced by heat herald a new era for spintronic applications

Japan | Posted on February 5th, 2009

The classic Seebeck effect describes the generation of an electric voltage when the ends of a material are at different temperatures. As such, it is used in thermoelectric devices that convert heat into electricity.

In a similar fashion, as reported by the researchers in Nature1, the spin Seebeck effect reported uses a temperature gradient in a magnetic material to create a flow of electron spins in the absence of any external voltage. As a result, spins of opposite polarization assemble at the two ends of the sample, creating a ‘spin voltage' caused by the different spin polarizations at both ends. This use of thermal effects in spintronics is novel and unexpected. "The electron spin is usually controlled by magnetic fields, so nobody has thought about a thermoelectric response," says Wataru Koshibae from the research team.

The discovery of the spin Seebeck effect is enabled by the so-called spin Hall effect. Through interactions between the spin current and the atoms in a metal, electrons of different spin orientations get scattered to opposite ends of the metal, creating an electrical voltage. The spin voltage created by the spin Seebeck effect is then detected by thin platinum sheets placed at both ends of the sample (Fig. 1).

Importantly, in this setup the electrons don't move at all, and only spins travel along the sample. This is markedly different to most other schemes where undesirable parallel electronic currents are unavoidable. In addition, there appears to be no limit to the distances along which spin currents can be sustained. "The spin Seebeck effect occurs in samples almost 1 cm long, much longer than the usual spin current decay lengths of 1 nm," comments Koshibae.

This first observation of the spin Seebeck effect therefore marks a new era in spintronics and opens the door to novel applications. Long-distance spin current are critical to the realization of spintronic devices, and these results offer the generation of spin currents simply through temperature effects.
Reference

1. Uchida, K., Takahashi, S., Harii, K., Ieda, J., Koshibae, W., Ando, K. Maekawa, S. & Saitoh, E. Observation of the spin Seebeck effect. Nature 455, 778-781 (2008).

The corresponding author for this highlight is based at the RIKEN Theoretical Design Team

####

For more information, please click here

Copyright © Riken

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

article

Related News Press

News and information

Automating DNA origami opens door to many new uses: Like 3-D printing did for larger objects, method makes it easy to build nanoparticles out of DNA May 30th, 2016

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Spintronics

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Spin lifetime anisotropy of graphene is much weaker than previously reported May 10th, 2016

Spintronics for future information technologies: Spin currents in topological insulators controlled May 2nd, 2016

Atomic magnets using hydrogen and graphene April 27th, 2016

Discoveries

Automating DNA origami opens door to many new uses: Like 3-D printing did for larger objects, method makes it easy to build nanoparticles out of DNA May 30th, 2016

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Announcements

Automating DNA origami opens door to many new uses: Like 3-D printing did for larger objects, method makes it easy to build nanoparticles out of DNA May 30th, 2016

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Quantum nanoscience

Researchers demonstrate size quantization of Dirac fermions in graphene: Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices May 20th, 2016

Graphene: A quantum of current - When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene May 20th, 2016

Technique improves the efficacy of fuel cells: Research demonstrates a new phase transition from metal to ionic conductor May 18th, 2016

Theorists smooth the way to modeling quantum friction: New paradigm offers a strategy for solving one of quantum mechanics' oldest problems May 18th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic