Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > How a Cell’s Mitotic Motors Direct Key Life Processes

Abstract:
In a cleverly designed experiment, cell biologists have discovered how dyneins organize chromosome placement to prepare for cell division. The surprise finding suggests it's the motor domain of the nanoscale chemical engine, not the cargo domain as once believed, that directs pre-mitotic action.

How a Cell’s Mitotic Motors Direct Key Life Processes

Amherst, MA | Posted on February 3rd, 2009

University of Massachusetts Amherst biologists have discovered a secret of how cells organize chromosomes to prepare for dividing. Their unexpected finding is reported in this week's issue of the journal, Current Biology.

The experiments sought to reveal how the cell's tiny, two-part chemical engine known as dynein, just 40 nanometers in diameter, takes charge of mitosis and keeps the delicate strands of chromosomes in order and in position. Until now, cell biologists had assumed it was the dynein's cargo domain that regulated this process. UMass Amherst cell biologist Wei-lih Lee and colleagues showed that it is the motor domain instead.

Dynein, like a delivery truck, carries cargo, Lee explains, but this protein truck is specialized because it interacts chemically and physically with the road. In the cell, this means dynein travels along segments of polymeric microtubule "roads" that grow and shrink as needed by adding or dropping sections. From experiments in budding yeast, Lee, with a talented postdoctoral fellow, Steven Markus, and biology junior fellow Jesse Punch, found that "dynein has a preference for locating at the ends of these microtubule tracks."

Lee says a lot of credit for a cleverly designed and executed set of experiments goes to Markus, who cut the dynein engines into motor and cargo halves and challenged the yeast cells to divide with access to only one part of the protein at a time. Markus also designed brighter-than-usual fluorescent probes to attach to the two dynein parts, red for the engine, green for the cargo domain. The strategies worked. The UMass Amherst research team now has one of the most elegant and practical probes for studying dynein function. Lee says, "I'm already getting requests from other researchers who want to use our new probes."

In this system, they observed that like a moving walkway at the airport, "dynein is a smart truck because it parks at the end of the microtubule, and ‘rides' along as the track grows," Lee explains. "Our findings show that the dynein's motor domain, the engine's core, is responsible for this end-binding property, which is surprising given that the same domain is used for walking along the track."

Applying their new understanding to cell division, the researchers say, "our findings further suggest that the dynein engine is turned off when it is parked on the microtubule end, but then turned on upon reaching the proper attachment site in the daughter cell's wall," says Lee. "This mechanism allows the yeast cell to control dynein activation with high accuracy" and avoids potential problems of transporting an "activated" protein through the cell.

Results of this new knowledge in basic science are also relevant for human nerve cell function. "It has already been shown that nerve cells use the same mechanism as yeast does to move the cell body," says Lee. Dynein malfunction can lead to mistakes in nerve cell migration which causes poor brain development disease such as lissencephaly.

This work was supported by National Institute of General Medical Sciences, the Marine Biological Laboratory, and the Biology Department HHMI Undergraduate Science Program.

####

For more information, please click here

Contacts:
Wei-lih Lee
413-545-2944

Copyright © Newswise

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

NanoScience: Giants of the Infinitesimal July 31st, 2014

New imaging agent provides better picture of the gut July 30th, 2014

Nanometrics Reports Second Quarter 2014 Financial Results July 30th, 2014

Nanomedicine

New imaging agent provides better picture of the gut July 30th, 2014

Zenosense, Inc. July 29th, 2014

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

FEI adds Phase Plate Technology and Titan Halo TEM to its Structural Biology Product Portfolio: New solutions provide the high-quality imaging and contrast necessary to analyze the 3D structure of molecules and molecular complexes July 28th, 2014

Discoveries

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

New imaging agent provides better picture of the gut July 30th, 2014

Watching Schrödinger's cat die (or come to life): Steering quantum evolution & using probes to conduct continuous error correction in quantum computers July 30th, 2014

From Narrow to Broad July 30th, 2014

Announcements

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

NanoScience: Giants of the Infinitesimal July 31st, 2014

Analytical solutions from Malvern Instruments support University of Wisconsin-Milwaukee researchers in understanding environmental effects of nanomaterials July 30th, 2014

FEI Unveils New Solutions for Faster Time-to-Analysis in Metals Research July 30th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE