Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Rice rolls out new nanocars: Fluorescent imaging shows models operate at room temperature

Abstract:
This year's model isn't your father's nanocar. It runs cool.

The drivers of Rice University's nanocars were surprised to find modified versions of their creation have the ability to roll at room temperature. While practical applications for the tiny machines may be years away, the breakthrough suggests they'll be easier to adapt to a wider range of uses than the originals, which had to be heated to 200 degrees Celsius before they could move across a surface.

Rice rolls out new nanocars: Fluorescent imaging shows models operate at room temperature

Houston, TX | Posted on February 2nd, 2009

The nanocar was a sensation when introduced in 2005 by the lab of James Tour, Rice's Chao Professor of Chemistry and a professor of mechanical engineering and materials science and computer science.

Tour's original single-molecule car had buckyball wheels and flexible axles, and it served as a proof-of-concept for the manufacture of machines at the nanoscale. A light-activated paddlewheel motor was later attached to propel it, and the wheels were changed from buckyballs to carboranes. These were easier to synthesize and permitted the motor to move, because the buckyball wheels trapped the light energy that served as fuel before the motor could turn. Since then, nanotrucks, nanobackhoes and other models have been added to the Rice showroom.

A large-scale representation of the nanocar made its public debut in Houston's famous Art Car Parade last year.

Rice's Stephan Link, an assistant professor of chemistry who specializes in plasmonics, took the wheel for a new series of experiments that built upon Tour's pioneering work. Link's primary achievement was using single-molecule fluorescence imaging to track the tiny vehicles, as opposed to the scanning tunneling microscopy (STM) used in earlier experiments. STM imaging can capture matter at an atomic scale, but the technique requires the target to be on a conductive substrate. Not so with fluorescent imaging.

A paper on the new research published this month in ACS Nano was authored by Link; Tour; Anatoly Kolomeisky, associate professor of chemistry and chemical and biomolecular engineering; postdoc Guillaume Vives; graduate students Saumyakanti Khatua and Jason M. Guerrero; and undergraduate Kevin Claytor.

"We thought, 'We're just going to take an image, and nothing's going to happen,'" said Link of the team's initial success in attaching fluorescent dye trailers to the nanocars. "We were worrying about how to build a temperature stage around it and how to heat it and how to make it move.

"To my surprise, my students came back and said, 'They moved!'"

Sure enough, time-lapsed films monitoring an area 10-by-10 microns square showed the cars, which appear as fluorescing dots, zigging and zagging on a standard glass slide. Link said the cars moved an average 4.1 nanometers (or two nanocar lengths) per second.

"It took us another year to quantify it," said Link, noting as key the development of a new tracking algorithm by Claytor that will be the subject of a future paper.

The simplest technique for finding moving nanocars was precisely the way astronomers find distant cosmic bodies: Look at a series of images, and the dots that move are winners. The ones that don't are either fluorescing molecules sitting by themselves or nanocars stuck in park.

The dye - tetramethylrhodamine isothiocyanate - had the added attraction of emitting a polarized signal. Since dye molecules tended to line up with the chassis, the researchers could always tell which way the cars were pointed.

Link hoped cars with dye embedded into the chassis can be built that would eliminate the drag created by the fluorescent trailer. He speculated that putting six wheels instead of four on a nanocar could also help keep it moving in one direction, much like a tank with treads.

"Now that we see movement, the challenge is to take it to the next level and make it go from point A to point B. That's not going to be easy." Creating nanotracks or roads may be part of the solution, Link said.

All the research is directed at the ultimate goal of building machines from the bottom up in much the same way proteins are built to carry out tasks in nature.

"In terms of computing, having these single molecules be addressable is a goal everybody wants to reach," said Link. "And to understand and emulate biophysics and biomechanics, to build a device based on what nature gives us, is of course one of the dreams of nanotechnology."

####

About Rice University
Rice University is consistently ranked one of America’s best teaching and research universities. It is distinguished by its: size—2,850 undergraduates and 1,950 graduate students; selectivity—10 applicants for each place in the freshman class; resources—an undergraduate student-to-faculty ratio of 6-to-1, and the fifth largest endowment per student among American universities; residential college system, which builds communities that are both close-knit and diverse; and collaborative culture, which crosses disciplines, integrates teaching and research, and intermingles undergraduate and graduate work. Rice’s wooded campus is located in the nation’s fourth largest city and on America’s South Coast.

For more information, please click here

Contacts:
David Ruth

713-348-6327

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The paper can be found at:

Time-lapsed films can be seen at:

Related News Press

News and information

A breakthrough in imaging gold nanoparticles to atomic resolution by electron microscopy August 22nd, 2014

Ultra-short pulse lasers & Positioning August 21st, 2014

Malvern’s Dr Alan Rawle talks TLAs in plenary lecture at Particulate Systems Analysis conference August 21st, 2014

Water window imaging opportunity: A new theoretical study elucidates mechanisms that could help in producing coherent radiations, ultimately promoting high-contrast imaging of biological samples August 21st, 2014

Videos/Movies

The channel that relaxes DNA: Relaxing DNA strands by using nano-channels: Instructions for use August 20th, 2014

“Active” surfaces control what’s on them: Researchers develop treated surfaces that can actively control how fluids or particles move August 6th, 2014

New Method Provides Nanoscale Details of Electrochemical Reactions in Electric Vehicle Battery Materials August 4th, 2014

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

Academic/Education

SEMATECH and Newly Merged SUNY CNSE/SUNYIT Launch New Patterning Center to Further Advance Materials Development: Center to Provide Access to Critical Tools that Support Semiconductor Technology Node Development August 7th, 2014

Oxford Instruments Asylum Research and the Center for Nanoscale Systems at Harvard University Present a Workshop on AFM Nanomechanical and Nanoelectrical Characterization, Aug. 21-22 August 6th, 2014

University of Manchester selects Anasys AFM-IR for coatings and corrosion research July 30th, 2014

Haydale Announces Collaboration Agreement with Swansea University’s Welsh Centre for Printing and Coatings (WCPC) July 12th, 2014

Molecular Machines

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

Breakthrough laser experiment reveals liquid-like motion of atoms in an ultra-cold cluster: University of Leicester research team unlocks insights into creation of new nano-materials July 25th, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

University of Illinois researchers demonstrate novel, tunable nanoantennas July 14th, 2014

Announcements

A breakthrough in imaging gold nanoparticles to atomic resolution by electron microscopy August 22nd, 2014

Ultra-short pulse lasers & Positioning August 21st, 2014

Malvern’s Dr Alan Rawle talks TLAs in plenary lecture at Particulate Systems Analysis conference August 21st, 2014

Water window imaging opportunity: A new theoretical study elucidates mechanisms that could help in producing coherent radiations, ultimately promoting high-contrast imaging of biological samples August 21st, 2014

Human Interest/Art

Japanese gold leaf artists worked on a nano-scale: Study demonstrates X-ray fluorescence spectroscopy is a non-destructive way to date artwork July 3rd, 2014

Harry Potter-style invisibility cloaks: A real possibility next Christmas? Forget socks and shaving foam, the big kids of tomorrow want an invisible cloak for Christmas December 19th, 2013

Chicago Awareness Organization First Not-for-Profit to Sponsor Dog Training to Detect Ovarian Cancer Odorants December 12th, 2013

ZEISS Microscopes used to create images for Art Exhibit at Midway Airport: Art of Science: Images from the Institute for Genomic Biology October 25th, 2013

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE