Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > nGimat Awarded US Department of Energy SBIR Phase II to Develop Insulation for Superconducting Nb3Sn Wire

Abstract:
The US Department of Energy (DOE) has awarded nGimat Co. a Small Business Innovation Research (SBIR) Phase II to develop insulation for superconducting Nb3Sn wire. This is expected to be a two-year contract with potential funding of approximately $750,000. The resulting wire will enable higher magnetic field strengths which can reduce required power and enhance system performance in applications such as higher resolution MRI scans for hospitals.

nGimat Awarded US Department of Energy SBIR Phase II to Develop Insulation for Superconducting Nb3Sn Wire

Atlanta, GA | Posted on February 2nd, 2009

Nb3Sn superconducting wire is a preferred superconducting medium for many applications since it can produce a higher field than another common superconductor, NbTi, which is important in higher magnetic field applications such as superconducting undulators. However, Nb3Sn wire requires a "Wind & React" technique, and because the reacted wire is too brittle to wind, the wire is first wound around a yoke, then reacted at temperatures well in excess of 600 ēC in an inert environment. The wire must be insulated before winding, so the insulation must also be heated and remain intact throughout the wire's reaction. Insulation sheaths are currently available, most notably of fiberglass, but these relatively thick sheaths take up valuable space that could be occupied by superconductor, and their possible looseness around the wire makes uniform, well-packed winding difficult. To effectively incorporate Nb3Sn superconducting wire for desired high peak fields, a thinner insulation material (about 25 mm) at similar or even lower cost is desired.

The Phase II approach will build on the Phase I insulation developed as a thin, ceramic-based coating that can be wound and go through the wire's reaction cycle at >600 ēC in an inert environment. Use of a thin ceramic (<30 micron) allows insulation that adheres to the wire and forms a more stable and controllable base for precision winding compared to the typical fiberglass insulation, which often adds over 100 microns to the wire diameter. The Phase I coating unit will be improved to allow uniform coating deposition with minimal operator input onto production-scale, continuous lengths of wire that can then be wound on a short yoke and tested for superconductivity and other properties.

Applications for superconductors such as Nb3Sn require from less than ten kilometers of wire to more than 300 kilometers of wire, depending on specific use. The majority of the commercial superconductor market (>$4500M in 2004) is for magnetic resonance imaging (MRI) units. This segment, as well as R&D, on a global scale is expected to continue to dominate the market, while high growth rates are anticipated for industrial and electronic applications. Each of these markets represent significant opportunity for a thinner, economical insulation.

####

About nGimat Co.
Through its core technology of NanoSpraySM Combustion Processing, nGimat is a cost-effective manufacturer and innovator of nanoEngineered MaterialsTM in the following areas: nanopowders, thin films and devices. The Company currently has a portfolio of 45 U.S. patents, 72 non-U.S. patents, and is processing about 60 patent applications.

For more information, please click here

Contacts:
David Smith
Phone: 678-287-2451

Copyright © nGimat Co.

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Seeing the action: UCSB researchers develop a novel device to image the minute forces and actions involved in cell membrane hemifusion May 27th, 2015

Physicists solve quantum tunneling mystery: ANU media release: An international team of scientists studying ultrafast physics have solved a mystery of quantum mechanics, and found that quantum tunneling is an instantaneous process May 27th, 2015

Who needs water to assemble DNA? Non-aqueous solvent supports DNA nanotechnology May 27th, 2015

Controlled Release of Anticorrosive Materials in Spot by Nanocarriers May 27th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Nanotechnology identifies brain tumor types through MRI 'virtual biopsy' in animal studies: If results are confirmed in humans, tumor cells could someday be diagnosed by MRI imaging and treated with tumor-specific IV injections; new NIH grant will fund future study May 27th, 2015

Who needs water to assemble DNA? Non-aqueous solvent supports DNA nanotechnology May 27th, 2015

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Announcements

Physicists solve quantum tunneling mystery: ANU media release: An international team of scientists studying ultrafast physics have solved a mystery of quantum mechanics, and found that quantum tunneling is an instantaneous process May 27th, 2015

Nanotechnology identifies brain tumor types through MRI 'virtual biopsy' in animal studies: If results are confirmed in humans, tumor cells could someday be diagnosed by MRI imaging and treated with tumor-specific IV injections; new NIH grant will fund future study May 27th, 2015

Who needs water to assemble DNA? Non-aqueous solvent supports DNA nanotechnology May 27th, 2015

Controlled Release of Anticorrosive Materials in Spot by Nanocarriers May 27th, 2015

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

What makes cancer cells spread? New device offers clues May 19th, 2015

Researchers build new fermion microscope: Instrument freezes and images 1,000 individual fermionic atoms at once May 13th, 2015

International and U.S. Students and Teachers Headed to Toronto for 34th Annual International Space Development ConferenceŽ: Students competed in prestigious NSS-NASA Ames Space Settlement Design Contest May 9th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project