Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > The Age of the Cyborg

Photo illustration by Martin Dee
Photo illustration by Martin Dee

Abstract:
By Göran Fernlund And Chad Sinclair
Associate Professors
Dept. of Materials Engineering

The melding of artificial materials within the body has long fascinated humans and been the basis for captivating science fiction. From the 1970's Six Million Dollar Man, to the 2008 movie Ironman, we have been enthralled by the idea of the half-human, half-machine with super-human abilities.

The Age of the Cyborg

VANCOUVER, BC, Canada | Posted on January 8th, 2009

At UBC Materials Engineering, the combination of artificial systems within the human body has a target quite different from those devised in science fiction; it's the next big thing in the world of biomedical engineering and healthcare.

With age, the human body wears out. And engineered materials—metals, polymers and ceramics—increasingly help repair or replace injured or destroyed body parts. At UBC Materials Engineering, research focuses on improving the biological, mechanical and chemical properties of these materials, allowing us to better aid in tissue repair, make longer-lasting implants and enhance the quality of life.

Assoc. Prof. Rizhi Wang, Canada Research Chair in Biomaterials, and Assoc. Prof. Goran Fernlund collaborate with surgeons, cell biologists and pharmaceutical scientists to develop novel implantable biomaterials and have had great success in improving materials used for hip implants.
Building on the wealth of knowledge in traditional biomaterials for surgical implants, a new biomaterials frontier is being created at UBC in the area of functional nanofibre scaffolds for tissue regeneration and targeted drug delivery.

UBC's Professor Frank Ko, Canada Research Chair in Nanofibrous Materials, is spearheading efforts in nanomaterials—materials whose dimensions are nearly atomic in size. With these materials Ko is developing novel nano scaffolds for tissue regeneration.

Tissue scaffolds are the next big thing for implants of the future. Like the scaffolding we see on construction sites, the nano scaffolds are being created by Ko to reconstruct damaged tissue within the human body. Burn victims would benefit from scaffolds used to regenerate new skin. Those with failing heart valves or damaged nerves could count on scaffolds to regenerate these parts from within the patient's own body. As healing progresses, the scaffold, being constructed from a biodegradable material, is absorbed and metabolized by the body while slowly releasing drugs to aid in the healing process.

The key to Ko's work is his unique technology for making scaffolds from millions of tiny fibres, each acting as a site for tissue growth. He accomplishes this using a novel technique known as "electrospinning" which can be used to fabricate fibres that are 10,000 times smaller than the thickness of a human hair. These nano-fibres, when piled on top of one another, provide a perfect scaffold for new tissue growth.
Victor Leung, a Materials Engineering undergraduate student who has been working with Ko on developing his electrospinning process for the next generation of scaffolding materials sees a day when biomaterials may be used to generate all kinds of new body parts.

"As we become more sophisticated in our ability to design materials, particularly at the nanoscale, we open all kinds of opportunities for repairing damaged body parts. The potential is really unlimited," says Leung.

Considering the great strides materials engineers are making in developing materials that are readily accepted by the body and that accelerate the process of recovery and healing, the age of the Cyborg seems not so much science fiction as it does science fact—a good thing given the increasing life expectancy and enduring desire to lead active lives.

####

For more information, please click here

Contacts:
UBC Public Affairs
310 - 6251 Cecil Green Park Road
Vancouver, BC Canada V6T 1Z1
tel 604.822.3131
fax 604.822.2684
e-mail

Copyright © University of British Columbia

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Possible Futures

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Academic/Education

SUNY Poly and GLOBALFOUNDRIES Announce New $500M R&D Program in Albany To Accelerate Next Generation Chip Technology: Arrival of Second Cutting Edge EUV Lithography Tool Launches New Patterning Center That Will Generate Over 100 New High Tech Jobs at SUNY Poly February 9th, 2016

COD Grad Begins Postdoctoral Fellow at Harvard University: Marsela Jorgolli's Passion for Physics Has Led to a Decade of Academic Research That Continues at Harvard University as a Postdoctoral Fellow February 2nd, 2016

Heriot-Watt's Institute of Photonics & Quantum Sciences uses the Deben Microtest 2 kN tensile stage to characterise ceramics and engineering plastics January 21st, 2016

Multiple uses for the JPK NanoWizard AFM system in the Smart Interfaces in Environmental Nanotechnology Group at the University of Illinois at Urbana-Champaign January 20th, 2016

Nanomedicine

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

SLAC X-ray laser turns crystal imperfections into better images of important biomolecules: New method could remove major obstacles to studying structures of complex biological machines February 11th, 2016

Announcements

Graphene leans on glass to advance electronics: Scientists' use of common glass to optimize graphene's electronic properties could improve technologies from flat screens to solar cells February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic