Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Dolphins inspire nanotech work, earn researcher $400K

Jonghwan Suhr envisions using the pliable manufactured nanocomposites to allow airplanes and aerospace vehicles to cut through the air more efficiently, saving fuel. Photo by Crista Hecht.
Jonghwan Suhr envisions using the pliable manufactured nanocomposites to allow airplanes and aerospace vehicles to cut through the air more efficiently, saving fuel. Photo by Crista Hecht.

Abstract:
Inspired with the speed at which dolphins swim through the water compared to other aquatic life, Jonghwan Suhr of the University of Nevada, Reno, decided to mimic the dolphin's skin using nanotechnology in order to make objects move more efficiently through the air.

Dolphins inspire nanotech work, earn researcher $400K

Reno, NV | Posted on December 31st, 2008

Suhr's research impressed the National Science Foundation, which recently presented him with their most prestigious honor for junior teacher-scholars, a Faculty Early Career Development (CAREER) Program award. The award brings with it $400,000 of funding over five years for his research and teaching.

"These are very competitive and prestigious grants and they are clear evidence of the scholarly potential of the recipient and the excellence of the program," College of Engineering Dean Manos Maragakis said. "The award can have a profound positive effect on the development and the career of the faculty member. It enhances the reputation of the department and the college and gives the opportunity for graduate students to work on state-of-the-art research."

In his groundbreaking research, Suhr, an assistant professor of mechanical engineering, and his colleagues developed new carbon nanotube composite materials with increased strength and damping qualities over conventional materials. Generally, the nanotubes are in a hollow cylindrical shape with nanoscale diameters and microscopic lengths.

"Most materials show compromise between two properties - strength and damping, but this particular system showed an increase in both," Suhr said. In addition, the continuously reinforced nanotube composites are lightweight, flexible, have mechanical robustness, outstanding fatigue resistance, electrical and thermal conductivities and also have tissue-like behavior, he said.

The new nanotube surface material Suhr's research team created, continuous carbon nanotube-polymer composites, will reduce drag force by increasing aerodynamic efficiency. The technology may also be used on wind turbine blades, enhancing the efficiency and reducing noise associated with the renewable energy machines.

Suhr envisions using the pliable manufactured nanocomposites to allow airplanes and aerospace vehicles to cut through the air more efficiently, saving fuel. He is already working with the aircraft company Boeing to investigate creating the artificial skin for wing structures of unmanned air vehicles.

Suhr will work with undergraduate students in his senior capstone course to demonstrate the concept of the artificial skins as a design project. The NSF CAREER award will support Suhr's research and his innovative teaching.

Kwang Kim, chairman of the Mechanical Engineering Department, said in his letter of support for Suhr's CAREER proposal, "his proposed research work regarding Continuous Nanotube Composite structures for bio-mimicking applications is new and will represent one of the most tangible, concrete and promising applications of nanotechnology to realistic mechanical systems in the near future." His work leads to a new frontier in nanotechnology.

Suhr's plan for the new composite also includes applications in which he hopes to make the soft tissue-like material into an electroactive polymer that would eliminate the need for many mechanical parts in a mechanism, to possibly mimic muscles and produce new structural applications.

####

For more information, please click here

Copyright © University of Nevada, Reno

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Metal oxide sandwiches: New option to manipulate properties of interfaces February 8th, 2016

Canadian physicists discover new properties of superconductivity February 8th, 2016

Leading bugs to the death chamber: A kinder face of cholesterol February 8th, 2016

From allergens to anodes: Pollen derived battery electrodes February 8th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Chiral magnetic effect generates quantum current: Separating left- and right-handed particles in a semi-metallic material produces anomalously high conductivity February 8th, 2016

Canadian physicists discover new properties of superconductivity February 8th, 2016

Leading bugs to the death chamber: A kinder face of cholesterol February 8th, 2016

From allergens to anodes: Pollen derived battery electrodes February 8th, 2016

Discoveries

A fast solidification process makes material crackle February 8th, 2016

Metal oxide sandwiches: New option to manipulate properties of interfaces February 8th, 2016

Canadian physicists discover new properties of superconductivity February 8th, 2016

Leading bugs to the death chamber: A kinder face of cholesterol February 8th, 2016

Announcements

Graphene decharging and molecular shielding February 8th, 2016

Canadian physicists discover new properties of superconductivity February 8th, 2016

Leading bugs to the death chamber: A kinder face of cholesterol February 8th, 2016

From allergens to anodes: Pollen derived battery electrodes February 8th, 2016

Aerospace/Space

Researchers develop completely new kind of polymer: Hybrid polymers could lead to new concepts in self-repairing materials, drug delivery and artificial muscles January 30th, 2016

Scientists build a neural network using plastic memristors: A group of Russian and Italian scientists have created a neural network based on polymeric memristors -- devices that can potentially be used to build fundamentally new computers January 28th, 2016

Deep Space Industries teams with UTIAS Space Flight Laboratory to demonstrate autonomous spacecraft maneuvering: SFL and DSI demonstrate enabling technology for low-cost asteroid missions and constellations January 25th, 2016

Graphene composite may keep wings ice-free: Rice University develops conductive material to heat surfaces, simplify ice removal January 25th, 2016

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

UTHealth research looks at nanotechnology to help prevent preterm birth February 7th, 2016

Graphene is strong, but is it tough? Berkeley Lab scientists find that polycrystalline graphene is not very resistant to fracture February 7th, 2016

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Identifying Commercial Success Stories from the National Nanotechnology Initiative: National Nanotechnology Coordination Office and White House Office of Science and Technology Policy Issue a Request for Information on NNI-Supported Success Stories February 2nd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic