Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > UC Davis researchers find molecule that targets brain tumors:New discovery could allow for direct delivery of treatments

Abstract:
UC Davis Cancer Center researchers report today the discovery of a molecule that targets glioblastoma, a highly deadly form of cancer. The finding, which is published in the January 2009 issue of the European Journal of Nuclear Medicine and Molecular Imaging, provides hope for effectively treating an incurable cancer.

UC Davis researchers find molecule that targets brain tumors:New discovery could allow for direct delivery of treatments

SACRAMENTO, CA | Posted on December 29th, 2008

Glioblastoma is the most common and aggressive type of primary brain tumor in adults. It is marked by tumors with irregular shapes and poorly defined borders that rapidly invade neighboring tissues, making them difficult to remove surgically.

"These brain tumors are currently treated with surgery to remove as much of the tumor as possible followed by radiation to kill cancer cells left behind and systemic chemotherapy to prevent spread to nearby tissues," said Kit Lam, senior author of the study and UC Davis chief of hematology and oncology. "It is unfortunate that this approach does not extend survival significantly. Most patients survive less than one year."

To find new options for treating the disease, Lam and his colleagues began searching for a molecule that could be injected into a patient's bloodstream and deliver high concentrations of medication or radionuclides directly to brain tumor cells while sparing normal tissues. Through their study, they identified a molecule called LXY1 that binds with high specificity to a particular cell-surface protein called alpha-3 integrin, which is overexpressed on cancer cells.

They also tested the molecule's ability to target brain cancer by implanting human glioblastoma cells both beneath the skin and in the brains of mice. The researchers injected the mice with a radiolabeled version of LXY1 and, using near-infrared fluorescence imaging, showed that the molecule did preferentially bind to human glioblastoma cells in both locations.

"This outcome gives us great hope that we will be able to deliver targeted therapies to treat glioblastoma," said Lam.

Lam is planning to continue this work by repeating the experiments with powerful cancer treatments linked to the LXY1 molecule. They will begin with iodine-131, a form of radionuclide currently used to treat some cancers, as well as a nanoparticle, or "smart bomb," that would carry cancer-fighting drugs to diseased cells.

Additional UC Davis study authors were Wenwu Xiao, Nianhuan Yao, Li Peng and Ruiwu Liu. Their research was funded by a grant from the National Institutes of Health.

####

About University of California - Davis - Health System
Designated by the National Cancer Institute, UC Davis Cancer Center cares for 9,000 adults and children each year from throughout the Central Valley and inland Northern California. The center's Brain and Neurologic Cancer Program includes highly experienced neurosurgeons, oncologists and nurses who help hundreds of patients overcome neurological cancers. Advanced laboratory and clinical research programs provide access to the most advanced treatments and technologies possible.

For more information, please click here

Contacts:
Public Affairs
UC Davis Health System
4900 Broadway, Suite 1200
Sacramento, CA 95820
Phone: (916) 734-9040
FAX: (916) 734-9066


Karen Finney

916-734-9064

Copyright © University of California - Davis - Health System

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

The International Space Elevator Consortium (ISEC) is proud to announce the 2014 Space Elevator Conference! This annual event will be held at the Museum of Flight in Seattle, Washington from Friday, August 22nd through Sunday, August 24th August 19th, 2014

KaSAM-2014 International Conference (September 7-10, 2014, Kathmandu, Nepal) August 19th, 2014

Success in Intracellular Imaging of Cesium Distribution in Plants Used for Cesium Absorption August 19th, 2014

Electrical engineers take major step toward photonic circuits: Team invents non-metallic metamaterial that enables them to 'compress' and contain light August 19th, 2014

Nanomedicine

Graphene rubber bands could stretch limits of current healthcare, new research finds August 19th, 2014

Interaction between Drug, DNA for Designing Anticancer Drugs Studied in Iran August 17th, 2014

Scientists fold RNA origami from a single strand: RNA origami is a new method for organizing molecules on the nanoscale. Using just a single strand of RNA, this technique can produce many complicated shapes. August 14th, 2014

Iranian Scientists Stabilize Protein on Highly Stable Electrode Surface August 14th, 2014

Discoveries

Success in Intracellular Imaging of Cesium Distribution in Plants Used for Cesium Absorption August 19th, 2014

Сalculations with Nanoscale Smart Particles August 19th, 2014

Electrical engineers take major step toward photonic circuits: Team invents non-metallic metamaterial that enables them to 'compress' and contain light August 19th, 2014

Graphene rubber bands could stretch limits of current healthcare, new research finds August 19th, 2014

Announcements

Сalculations with Nanoscale Smart Particles August 19th, 2014

Life on Mars? Implications of a newly discovered mineral-rich structure August 19th, 2014

Harris & Harris Group Letter to Shareholders on Website August 19th, 2014

Electrical engineers take major step toward photonic circuits: Team invents non-metallic metamaterial that enables them to 'compress' and contain light August 19th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE