Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Computing in a molecule

Abstract:
Over the last 60 years, ever-smaller generations of transistors have driven exponential growth in computing power. Could molecules, each turned into miniscule computer components, trigger even greater growth in computing over the next 60?

Atomic-scale computing, in which computer processes are carried out in a single molecule or using a surface atomic-scale circuit, holds vast promise for the microelectronics industry. It allows computers to continue to increase in processing power through the development of components in the nano- and pico scale. In theory, atomic-scale computing could put computers more powerful than today's supercomputers in everyone's pocket.

Computing in a molecule

Europe | Posted on December 22nd, 2008

"Atomic-scale computing researchers today are in much the same position as transistor inventors were before 1947. No one knows where this will lead," says Christian Joachim of the French National Scientific Research Centre's (CNRS) Centre for Material Elaboration & Structural Studies (CEMES) in Toulouse, France.

Joachim, the head of the CEMES Nanoscience and Picotechnology Group (GNS), is currently coordinating a team of researchers from 15 academic and industrial research institutes in Europe whose groundbreaking work on developing a molecular replacement for transistors has brought the vision of atomic-scale computing a step closer to reality. Their efforts, a continuation of work that began in the 1990s, are today being funded by the European Union in the Pico-Inside project.

In a conventional microprocessor - the "motor" of a modern computer - transistors are the essential building blocks of digital circuits, creating logic gates that process true or false signals. A few transistors are needed to create a single logic gate and modern microprocessors contain billions of them, each measuring around 100 nanometres.

Transistors have continued to shrink in size since Intel co-founder Gordon E. Moore famously predicted in 1965 that the number that can be placed on a processor would double roughly every two years. But there will inevitably come a time when the laws of quantum physics prevent any further shrinkage using conventional methods. That is where atomic-scale computing comes into play with a fundamentally different approach to the problem.

"Nanotechnology is about taking something and shrinking it to its smallest possible scale. It's a top-down approach," Joachim says. He and the Pico-Inside team are turning that upside down, starting from the atom, the molecule, and exploring if such a tiny bit of matter can be a logic gate, memory source, or more. "It is a bottom-up or, as we call it, 'bottom-bottom' approach because we do not want to reach the material scale," he explains.

Joachim's team has focused on taking one individual molecule and building up computer components, with the ultimate goal of hosting a logic gate in a single molecule.
How many atoms to build a computer?

"The question we have asked ourselves is how many atoms does it take to build a computer?" Joachim says. "That is something we cannot answer at present, but we are getting a better idea about it."

The team has managed to design a simple logic gate with 30 atoms that perform the same task as 14 transistors, while also exploring the architecture, technology and chemistry needed to achieve computing inside a single molecule and to interconnect molecules.

They are focusing on two architectures: one that mimics the classical design of a logic gate but in atomic form, including nodes, loops, meshes etc., and another, more complex, process that relies on changes to the molecule's conformation to carry out the logic gate inputs and quantum mechanics to perform the computation.

The logic gates are interconnected using scanning-tunnelling microscopes and atomic-force microscopes - devices that can measure and move individual atoms with resolutions down to 1/100 of a nanometre (that is one hundred millionth of a millimetre!). As a side project, partly for fun but partly to stimulate new lines of research, Joachim and his team have used the technique to build tiny nano-machines, such as wheels, gears, motors and nano-vehicles each consisting of a single molecule.

"Put logic gates on it and it could decide where to go," Joachim notes, pointing to what would be one of the world's first implementations of atomic-scale robotics.

The importance of the Pico-Inside team's work has been widely recognised in the scientific community, though Joachim cautions that it is still very much fundamental research. It will be some time before commercial applications emerge from it. However, emerge they all but certainly will.

"Microelectronics needs us if logic gates - and as a consequence microprocessors - are to continue to get smaller," Joachim says.

The Pico-Inside researchers, who received funding under the ICT strand of the EU's Sixth Framework Programme, are currently drafting a roadmap to ensure computing power continues to increase in the future.

####

For more information, please click here

Copyright © ITC Results

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Toward optical chips: A promising light source for optoelectronic chips can be tuned to different frequencies September 19th, 2014

New research points to graphene as a flexible, low-cost touchscreen solution September 19th, 2014

Wear-resistant ceramic powder maximises component lifespan in high-stress applications: Innovnano’s nanostructured 3YSZ offers improved tribological performance for manufacturing components September 18th, 2014

IEEE International Electron Devices Meeting To Celebrate 60th Anniversary as The Leading Technical Conference for Advanced Semiconductor Devices September 18th, 2014

Possible Futures

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Chip Technology

Toward optical chips: A promising light source for optoelectronic chips can be tuned to different frequencies September 19th, 2014

IEEE International Electron Devices Meeting To Celebrate 60th Anniversary as The Leading Technical Conference for Advanced Semiconductor Devices September 18th, 2014

‘Small’ transformation yields big changes September 16th, 2014

Researchers Create World’s Largest DNA Origami September 11th, 2014

Nanoelectronics

Rice rolls 'neat' nanotube fibers: Rice University researchers' acid-free approach leads to strong conductive carbon threads September 15th, 2014

Excitonic Dark States Shed Light on TMDC Atomic Layers: Berkeley Lab Discovery Holds Promise for Nanoelectronic and Photonic Applications September 11th, 2014

Researchers Create World’s Largest DNA Origami September 11th, 2014

Material development on the nanoscale: Doped graphene nanoribbons with potential September 8th, 2014

Discoveries

Toward optical chips: A promising light source for optoelectronic chips can be tuned to different frequencies September 19th, 2014

New research points to graphene as a flexible, low-cost touchscreen solution September 19th, 2014

CiQUS researchers design an artificial nose to detect DNA differentiation with single nucleotide resolution September 18th, 2014

Big Results Require Big Ambitions: Three young UCSB faculty receive CAREER awards from the National Science Foundation September 18th, 2014

Announcements

Toward optical chips: A promising light source for optoelectronic chips can be tuned to different frequencies September 19th, 2014

New research points to graphene as a flexible, low-cost touchscreen solution September 19th, 2014

FEI Opens New Technology Center in Czech Republic: FEI expands its presence in Brno with the opening of a new, larger facility September 18th, 2014

Biosensors Get a Boost from Graphene Partnership: $5 Million Investment Supports Dozens of Jobs and Development of 300mm Fabrication Process and Wafer Transfer Facility September 18th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE