Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Study on cytotoxicity of carbon nanotubes

Abstract:
Owing to the novel properties of carbon nanotubes (CBNs), a series of problems associated with in vitro toxicity assessments of carbon nanotubes (CNTs) have appeared in many literatures. In order to properly evaluate the potential risk to human health, the cell toxicity assay of CBNs can not be conducted by traditional methods employed in common toxicology.

Study on cytotoxicity of carbon nanotubes

China | Posted on December 22nd, 2008

Ying Zhu and Wenxin Li in Laboratory of Nano-biology and Medicine, Shanghai Institute of Applied Physics, Shanghai, P. R.China gave this point of view in their review articles. This paper, "Study on Cytotoxicity of Carbon Nanotubes" was published in Issue 51 (November, 2008) of the Science in China Series B: Chemistry .

With their production and application at large scale, CNTs may cause adverse response to the environment and human health. Thus, the study on bio-effects and safety of CNTs has attracted great attention from scientists and governments worldwide. Unfortunately experimental information obtained thus far on CNTs' cytotoxicity is often lack of comparability, or even in contradiction.

This paper systematically reviewed most of the experimental results reported in the literatures. The emphasis was placed on the examination of a variety of factors affecting CNTs cytotoxicity, including species of CNTs, impurities contained, lengths of CNTs, aspect ratios, chemical modification, and assaying methods of cytotoxicity. Based on analysis of the research status on cytotoxicity of CNTs, the authors suggested that care should be taken for several issues such as chemical modification and realistic exposure, more complete and quantified characterization of CNTs, determination methods of cell viability. More importantly, the studies on physical and chemical mechanisms of CNTs' cytotoxicity should be strengthened.

In view of novel properties of CNTs, namely huge surface areas, high adsorption activity, and great ability of internalization into cells, CNTs are able to deliver various molecules in surroundings which usually can not enter cells due to poor cell permeability, into the cell interior and then effectively perform their biological activity. Accordingly "nanotoxicology should have its own characteristics differing from common toxicology in respect to research thinking, assay methods, technical routes, and evaluation criteria", as pointed out by the authors in this paper. Finally, the authors hoped that the scientists should deeply understand the uniqueness of nanomaterials, enhance the collaboration of physics, chemistry and toxicology, and push forward the study of nanotoxicology with the goal of making contribution to application of nanoscience and nanotechnology in various fields of national economy.

This work was supported by the National Natural Science Foundation of China (Nos.10475109 and 10775169), Shanghai Municipal Commission for Science and Technology (Nos. 0552nm033, 0652nm016 and 0752nm021) and MOST973 Program (No. 2006CB705605).

This paper deserves publication because the dissertation is sound, and the topic attracted the public interesting, concerning in nanoscience, environment, and health. In addition, the main ideals delivery in this paper bridged over a gap between the substance science and the life science in the frame of nanoscience and technology.

Reference: Zhu Y, Li WX. Cytotoxicity of carbon nanotubes. Science in China Series B: Chemistry, 2008; 51(11): 1021-1029 dx.doi.org/10.1007/s11426-008-0120-6

####

For more information, please click here

Contacts:
Wen-Xin Li

0086-235-955-7530

Copyright © Science in China Press

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Arrowhead Pharmaceuticals to Host R&D Day on Emerging Pipeline of RNAi Therapeutics September 25th, 2018

Arrowhead Pharmaceuticals to Host R&D Day on Emerging Pipeline of RNAi Therapeutics September 25th, 2018

Arrowhead Pharmaceuticals Reports Inducement Grants under NASDAQ Marketplace Rule 5635(c)(4) September 25th, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

Govt.-Legislation/Regulation/Funding/Policy

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Researchers develop microbubble scrubber to destroy dangerous biofilms September 19th, 2018

Researchers managed to prevent the disappearing of quantum information September 14th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

Nanotubes/Buckyballs/Fullerenes/Nanorods

Carbon nanodots do an ultrafine job with in vitro lung tissue: New experiments highlight the role of charge and size when it comes to carbon nanodots that mimic the effect of nanoscale pollution particles on the human lung. September 12th, 2018

Graphene nanotubes outperform ammonium salts and carbon black in PU applications September 11th, 2018

S, N co-doped carbon nanotube-encapsulated CoS2@Co: Efficient and stable catalysts for water splitting September 10th, 2018

Peering into private life of atomic clusters -- using the world's tiniest test tubes September 6th, 2018

Announcements

Arrowhead Pharmaceuticals to Host R&D Day on Emerging Pipeline of RNAi Therapeutics September 25th, 2018

Arrowhead Pharmaceuticals to Host R&D Day on Emerging Pipeline of RNAi Therapeutics September 25th, 2018

Arrowhead Pharmaceuticals Reports Inducement Grants under NASDAQ Marketplace Rule 5635(c)(4) September 25th, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

Environment

Silver nanoparticles are toxic for aquatic organisms: A research team at the UPV/EHU-University of the Basque Country has analysed how zebrafish are affected in the long term by exposure to silver particles September 19th, 2018

Carbon nanodots do an ultrafine job with in vitro lung tissue: New experiments highlight the role of charge and size when it comes to carbon nanodots that mimic the effect of nanoscale pollution particles on the human lung. September 12th, 2018

A human enzyme can biodegrade graphene August 28th, 2018

Large scale preparation method of high quality SWNT sponges August 24th, 2018

Safety-Nanoparticles/Risk management

Silver nanoparticles are toxic for aquatic organisms: A research team at the UPV/EHU-University of the Basque Country has analysed how zebrafish are affected in the long term by exposure to silver particles September 19th, 2018

Carbon nanodots do an ultrafine job with in vitro lung tissue: New experiments highlight the role of charge and size when it comes to carbon nanodots that mimic the effect of nanoscale pollution particles on the human lung. September 12th, 2018

A human enzyme can biodegrade graphene August 28th, 2018

Nanoscience and the future of healthcare kick off first day of ACS national meeting in Boston: Presidential events highlight safety, diversity and groundbreaking research August 2nd, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project