Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > IBM Scientists Develop World's Fastest Graphene Transistor

Abstract:
IBM (NYSE: IBM) Researchers today announced that they demonstrated the operation of graphene field-effect transistors at GHz frequencies, and achieved the highest frequencies reported so far using this novel non-silicon electronic material.

IBM Scientists Develop World's Fastest Graphene Transistor

YORKTOWN HEIGHTS, NY | Posted on December 19th, 2008

This accomplishment is an important milestone for the Carbon Electronics for RF Applications (CERA) program sponsored by DARPA, as part of the effort to develop the next-generation of communication devices.

Graphene is a special form of graphite, consisting of a single layer of carbon atoms packed in honeycomb lattice, similar to an atomic scale chicken wire. Graphene has attracted immense worldwide attention and activities because its unusual electronic properties may eventually lead to vastly faster transistors than any transistors achieved so far.

The work is performed by inter-disciplinary collaboration at IBM T. J. Waston Research Center. "Integrating new materials along with the miniaturization of transistors is the driving force in improving the performance of next generation electronic chips," said IBM researchers involved in this project.

The operation speed of a transistor is determined by the size of the device and the speed at which electrons travel. The size dependence was one of the driving forces to pursue ever-shrinking Si transistors in semiconductor industries. A key advantage of graphene lies in the very high electron speed with which electrons propagate in it, essential for achieving high-speed, high-performance transistors.

Now, IBM scientists have fabricated nanoscale graphene field-effect transistors and demonstrated the operation of graphene transistors at the GHz frequency range. More importantly, the scaling behavior, i.e. the size dependence of the performance of the graphene transistors was established for the first time. The team found that the operation frequency increases with diminishing device dimension and achieved a cut-off frequency of 26 GHz for graphene transistors with a gate length of 150 nm, the highest frequency obtained for graphene so far.

IBM researchers expect that by improving the gate dielectric materials, the performance of these graphene transistors could be further enhanced. They expect that THz graphene transistors could be achieved in an optimized graphene transistor with a gate length of 50 nanometers. In the next phase, the IBM researchers also plan to pursue RF circuits based on these high-performance transistors.

The report on this work, entitled "Operation of Graphene Transistors at GHz Frequencies" is published today in the journal Nano Letters and can be accessed at pubs.acs.org/doi/abs/10.1021/nl803316h.

####

For more information, please click here

Contacts:
Michael Loughran
IBM
914.945.1613

Copyright © Marketwire

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Carbon nanoballs can greatly contribute to sustainable energy supply January 27th, 2015

The laser pulse that gets shorter all by itself: Ultrashort laser pulses have become an indispensable tool for atomic and molecular research; A new technology makes creating short infrared pulses easy and cheap January 27th, 2015

New pathway to valleytronics January 27th, 2015

Stomach acid-powered micromotors get their first test in a living animal January 27th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Researchers Make Magnetic Graphene: UC Riverside research could lead to new multi-functional electronic devices January 27th, 2015

New pathway to valleytronics January 27th, 2015

Nanoshuttle wear and tear: It's the mileage, not the age January 26th, 2015

Visualizing interacting electrons in a molecule: Scientists at Aalto University and the University of Zurich have succeeded in directly imaging how electrons interact within a single molecule January 26th, 2015

Chip Technology

Researchers Make Magnetic Graphene: UC Riverside research could lead to new multi-functional electronic devices January 27th, 2015

Nanometrics to Present at the Stifel 2015 Technology, Internet and Media Conference January 27th, 2015

New pathway to valleytronics January 27th, 2015

Entanglement on a chip: Breakthrough promises secure communications and faster computers January 27th, 2015

Announcements

Industrial Nanotech, Inc. Announces New OEM Customer January 27th, 2015

Carbon nanoballs can greatly contribute to sustainable energy supply January 27th, 2015

The laser pulse that gets shorter all by itself: Ultrashort laser pulses have become an indispensable tool for atomic and molecular research; A new technology makes creating short infrared pulses easy and cheap January 27th, 2015

New pathway to valleytronics January 27th, 2015

Military

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

Scientists 'bend' elastic waves with new metamaterials that could have commercial applications: Materials could benefit imaging and military enhancements such as elastic cloaking January 23rd, 2015

Laser-generated surface structures create extremely water-repellent metals: Super-hydrophobic properties could lead to applications in solar panels, sanitation and as rust-free metals January 20th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE