Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Many tracers make light work: A new type of biological camera can trace several different molecules at once in a live animal

Figure 1: Compound image from a Compton camera showing the positions of three different radioisotopes, zinc (red), strontium (blue) and iodine (green), in a live mouse. (This work was completed in compliance with Japan's ethical standards for experiments on live animals.)

Reproduced from Ref.1 © 2008 by permission of The Royal Society of Chemistry (RSC)
Figure 1: Compound image from a Compton camera showing the positions of three different radioisotopes, zinc (red), strontium (blue) and iodine (green), in a live mouse. (This work was completed in compliance with Japan's ethical standards for experiments on live animals.)
Reproduced from Ref.1 © 2008 by permission of The Royal Society of Chemistry (RSC)

Abstract:
Doctors and scientists can visualize specific biological processes in living creatures by monitoring radioactive tracer molecules. So far, imaging techniques have largely been limited to seeing one tracer molecule at a time, which is unlikely to provide the full picture of complex functions or diseases.

Many tracers make light work: A new type of biological camera can trace several different molecules at once in a live animal

Japan | Posted on December 19th, 2008

Now Shuichi Enomoto, Shinji Motomura and co-workers at the RIKEN Molecular Imaging Research Program in Kobe and Wako have produced images of three radioactive isotopes at the same time in a live mouse1. The researchers adapted a gamma-ray imaging device called a semiconductor Compton camera, which was originally developed for gamma-ray astrophysics.

"We had been working on research and development of ‘multitracer' technology," explains Motomura. "A multitracer contains radioisotopes of various chemical elements, so that many elements and their interactions can be observed by one experiment. Later we proposed realizing multiple molecular imaging with a semiconductor Compton camera."

The Compton camera consists of two detectors made from intermeshed strips of germanium, and can probe a wide range of gamma ray energies. "An extremely pure crystal of germanium can work as a radiation detector with high energy resolution," explains Motomura. "Two sets of germanium electrodes are arranged in strips at right angles, so that the gamma-ray energy and hit positions can be detected."

To test their modified Compton camera for biological imaging, the researchers chose three common radioactive tracers—isotopes of iodine, strontium and zinc—and injected them into an eight-week-old male mouse. The mouse was anaesthetized and scanned for 12 hours, producing both 2D and 3D images. The three tracers were distinguished by identifying their different emission energy peaks, and could be represented together in images by allocating three different colors: red, green and blue (Fig. 1).

All the tracers collected in areas where they would normally be expected: zinc tends to accumulate in the liver or in tumors, while strontium collects in the bones and iodine is taken up into the adrenal and thyroid glands. The researchers observed similar concentrations and distributions of the tracers every 3 hours over the 12-hour scanning period, implying a fast and long-lasting imaging capability.

The researchers believe their results show great promise for the Compton camera in biological imaging. At present these germanium-based detectors are very expensive, but there could be strong demand in future, once the researchers improve their equipment to provide higher resolution images in a shorter time.
Reference

1. Motomura, S., Kanayama, Y., Haba, H., Watanabe, Y. & Enomoto, S. Multiple molecular simultaneous imaging in a live mouse using semiconductor Compton camera. Journal of Analytical Atomic Spectrometry 23, 1089-1092 (2008).

The corresponding author for this highlight is based at the RIKEN Metallomics Imaging Research Unit

####

For more information, please click here

Copyright © Riken

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

article

Related News Press

News and information

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Copper shines as flexible conductor August 29th, 2014

Imaging

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

Ultra-Low Frequency Vibration Isolation Stabilizes Scanning Tunneling Microscopy at UCLA’s Nano-Research Group August 28th, 2014

Discoveries

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

Copper shines as flexible conductor August 29th, 2014

Novel 'butterfly' molecule could build new sensors, photoenergy conversion devices August 28th, 2014

Announcements

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE