Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Many tracers make light work: A new type of biological camera can trace several different molecules at once in a live animal

Figure 1: Compound image from a Compton camera showing the positions of three different radioisotopes, zinc (red), strontium (blue) and iodine (green), in a live mouse. (This work was completed in compliance with Japan's ethical standards for experiments on live animals.)

Reproduced from Ref.1 © 2008 by permission of The Royal Society of Chemistry (RSC)
Figure 1: Compound image from a Compton camera showing the positions of three different radioisotopes, zinc (red), strontium (blue) and iodine (green), in a live mouse. (This work was completed in compliance with Japan's ethical standards for experiments on live animals.)
Reproduced from Ref.1 © 2008 by permission of The Royal Society of Chemistry (RSC)

Abstract:
Doctors and scientists can visualize specific biological processes in living creatures by monitoring radioactive tracer molecules. So far, imaging techniques have largely been limited to seeing one tracer molecule at a time, which is unlikely to provide the full picture of complex functions or diseases.

Many tracers make light work: A new type of biological camera can trace several different molecules at once in a live animal

Japan | Posted on December 19th, 2008

Now Shuichi Enomoto, Shinji Motomura and co-workers at the RIKEN Molecular Imaging Research Program in Kobe and Wako have produced images of three radioactive isotopes at the same time in a live mouse1. The researchers adapted a gamma-ray imaging device called a semiconductor Compton camera, which was originally developed for gamma-ray astrophysics.

"We had been working on research and development of ‘multitracer' technology," explains Motomura. "A multitracer contains radioisotopes of various chemical elements, so that many elements and their interactions can be observed by one experiment. Later we proposed realizing multiple molecular imaging with a semiconductor Compton camera."

The Compton camera consists of two detectors made from intermeshed strips of germanium, and can probe a wide range of gamma ray energies. "An extremely pure crystal of germanium can work as a radiation detector with high energy resolution," explains Motomura. "Two sets of germanium electrodes are arranged in strips at right angles, so that the gamma-ray energy and hit positions can be detected."

To test their modified Compton camera for biological imaging, the researchers chose three common radioactive tracers—isotopes of iodine, strontium and zinc—and injected them into an eight-week-old male mouse. The mouse was anaesthetized and scanned for 12 hours, producing both 2D and 3D images. The three tracers were distinguished by identifying their different emission energy peaks, and could be represented together in images by allocating three different colors: red, green and blue (Fig. 1).

All the tracers collected in areas where they would normally be expected: zinc tends to accumulate in the liver or in tumors, while strontium collects in the bones and iodine is taken up into the adrenal and thyroid glands. The researchers observed similar concentrations and distributions of the tracers every 3 hours over the 12-hour scanning period, implying a fast and long-lasting imaging capability.

The researchers believe their results show great promise for the Compton camera in biological imaging. At present these germanium-based detectors are very expensive, but there could be strong demand in future, once the researchers improve their equipment to provide higher resolution images in a shorter time.
Reference

1. Motomura, S., Kanayama, Y., Haba, H., Watanabe, Y. & Enomoto, S. Multiple molecular simultaneous imaging in a live mouse using semiconductor Compton camera. Journal of Analytical Atomic Spectrometry 23, 1089-1092 (2008).

The corresponding author for this highlight is based at the RIKEN Metallomics Imaging Research Unit

####

For more information, please click here

Copyright © Riken

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

article

Related News Press

News and information

Scientists Capture Ultrafast Snapshots of Light-Driven Superconductivity: X-rays reveal how rapidly vanishing 'charge stripes' may be behind laser-induced high-temperature superconductivity April 16th, 2014

'Life Redesigned: The Emergence of Synthetic Biology' Lecture at Brookhaven Lab on Wednesday, April 30: Biomedical Engineer James Collins to Speak for BSA Distinguished Lecture Series April 16th, 2014

ECHA Planning Workshop on Regulatory Challenges in the Risk Assessment of Nanomaterials April 16th, 2014

Lumerical files a provisional patent that extends the standard eigenmode expansion propagation technique to better address waveguide component design. Lumerical’s EME propagation tool will address a wide set of waveguide applications in silicon photonics and integrated optics April 16th, 2014

Imaging

Catching the (Invisible) Wave: UC Santa Barbara researchers create a unique semiconductor that manipulates light in the invisible infrared/terahertz range, paving the way for new and enhanced applications April 11th, 2014

Agilent Technologies Announces Fourth NanoMeasure Scientific Symposium: National Center for Nanoscience and Technology in Beijing to Host Event April 10th, 2014

Hawk Trade Secures Funding and Development Capital for Nanotec Industries: Nanotec Industries successfully negotiates funding for development of nano-sized treatment and imaging delivery device facility through Hawk Trade April 3rd, 2014

New JEOL-Nikon MiXcroscopy Correlative Imaging Solution March 27th, 2014

Discoveries

Scientists Capture Ultrafast Snapshots of Light-Driven Superconductivity: X-rays reveal how rapidly vanishing 'charge stripes' may be behind laser-induced high-temperature superconductivity April 16th, 2014

Scientists observe quantum superconductor-metal transition and superconducting glass: A team including MIPT physicist observed quantum superconductor-metal transition and superconducting glass April 16th, 2014

UT Arlington physicist creates new nanoparticle for cancer therapy April 16th, 2014

Targeting cancer with a triple threat: MIT chemists design nanoparticles that can deliver three cancer drugs at a time April 15th, 2014

Announcements

UT Arlington physicist creates new nanoparticle for cancer therapy April 16th, 2014

Relieving electric vehicle range anxiety with improved batteries: Lithium-sulfur batteries last longer with nanomaterial-packed cathode April 16th, 2014

Aerotech X-Y ball-screw stage for economical high performance Planar positioning April 16th, 2014

Energy Research Facility Construction Project at Brookhaven Lab Wins U.S. Energy Secretary's Achievement Award April 16th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE