Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Many tracers make light work: A new type of biological camera can trace several different molecules at once in a live animal

Figure 1: Compound image from a Compton camera showing the positions of three different radioisotopes, zinc (red), strontium (blue) and iodine (green), in a live mouse. (This work was completed in compliance with Japan's ethical standards for experiments on live animals.)

Reproduced from Ref.1 © 2008 by permission of The Royal Society of Chemistry (RSC)
Figure 1: Compound image from a Compton camera showing the positions of three different radioisotopes, zinc (red), strontium (blue) and iodine (green), in a live mouse. (This work was completed in compliance with Japan's ethical standards for experiments on live animals.)
Reproduced from Ref.1 © 2008 by permission of The Royal Society of Chemistry (RSC)

Abstract:
Doctors and scientists can visualize specific biological processes in living creatures by monitoring radioactive tracer molecules. So far, imaging techniques have largely been limited to seeing one tracer molecule at a time, which is unlikely to provide the full picture of complex functions or diseases.

Many tracers make light work: A new type of biological camera can trace several different molecules at once in a live animal

Japan | Posted on December 19th, 2008

Now Shuichi Enomoto, Shinji Motomura and co-workers at the RIKEN Molecular Imaging Research Program in Kobe and Wako have produced images of three radioactive isotopes at the same time in a live mouse1. The researchers adapted a gamma-ray imaging device called a semiconductor Compton camera, which was originally developed for gamma-ray astrophysics.

"We had been working on research and development of ‘multitracer' technology," explains Motomura. "A multitracer contains radioisotopes of various chemical elements, so that many elements and their interactions can be observed by one experiment. Later we proposed realizing multiple molecular imaging with a semiconductor Compton camera."

The Compton camera consists of two detectors made from intermeshed strips of germanium, and can probe a wide range of gamma ray energies. "An extremely pure crystal of germanium can work as a radiation detector with high energy resolution," explains Motomura. "Two sets of germanium electrodes are arranged in strips at right angles, so that the gamma-ray energy and hit positions can be detected."

To test their modified Compton camera for biological imaging, the researchers chose three common radioactive tracers—isotopes of iodine, strontium and zinc—and injected them into an eight-week-old male mouse. The mouse was anaesthetized and scanned for 12 hours, producing both 2D and 3D images. The three tracers were distinguished by identifying their different emission energy peaks, and could be represented together in images by allocating three different colors: red, green and blue (Fig. 1).

All the tracers collected in areas where they would normally be expected: zinc tends to accumulate in the liver or in tumors, while strontium collects in the bones and iodine is taken up into the adrenal and thyroid glands. The researchers observed similar concentrations and distributions of the tracers every 3 hours over the 12-hour scanning period, implying a fast and long-lasting imaging capability.

The researchers believe their results show great promise for the Compton camera in biological imaging. At present these germanium-based detectors are very expensive, but there could be strong demand in future, once the researchers improve their equipment to provide higher resolution images in a shorter time.
Reference

1. Motomura, S., Kanayama, Y., Haba, H., Watanabe, Y. & Enomoto, S. Multiple molecular simultaneous imaging in a live mouse using semiconductor Compton camera. Journal of Analytical Atomic Spectrometry 23, 1089-1092 (2008).

The corresponding author for this highlight is based at the RIKEN Metallomics Imaging Research Unit

####

For more information, please click here

Copyright © Riken

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

article

Related News Press

News and information

Immune system is key ally in cyberwar against cancer: Rice University study yields new two-step strategy for weakening cancer September 23rd, 2014

Los Alamos Researchers Uncover New Properties in Nanocomposite Oxide Ceramics for Reactor Fuel, Fast-Ion Conductors: Misfit dislocations are key to transport properties across material interfaces September 23rd, 2014

Production of Organometallic Frameworks in Least Possible Time September 23rd, 2014

Engineers show light can play seesaw at the nanoscale: Discovery is another step toward faster and more energy-efficient optical devices for computation and communication September 22nd, 2014

Imaging

IEEE International Electron Devices Meeting To Celebrate 60th Anniversary as The Leading Technical Conference for Advanced Semiconductor Devices September 18th, 2014

FEI Opens New Technology Center in Czech Republic: FEI expands its presence in Brno with the opening of a new, larger facility September 18th, 2014

New NPZ100-403 Piezo Stage from nPoint Inc. September 17th, 2014

New non-invasive technique could revolutionize the imaging of metastatic cancer September 17th, 2014

Discoveries

Immune system is key ally in cyberwar against cancer: Rice University study yields new two-step strategy for weakening cancer September 23rd, 2014

Los Alamos Researchers Uncover New Properties in Nanocomposite Oxide Ceramics for Reactor Fuel, Fast-Ion Conductors: Misfit dislocations are key to transport properties across material interfaces September 23rd, 2014

Production of Organometallic Frameworks in Least Possible Time September 23rd, 2014

Twisted graphene chills out: When two sheets of graphene are stacked in a special way, it is possible to cool down the graphene with a laser instead of heating it up, University of Manchester researchers have shown September 22nd, 2014

Announcements

Immune system is key ally in cyberwar against cancer: Rice University study yields new two-step strategy for weakening cancer September 23rd, 2014

Los Alamos Researchers Uncover New Properties in Nanocomposite Oxide Ceramics for Reactor Fuel, Fast-Ion Conductors: Misfit dislocations are key to transport properties across material interfaces September 23rd, 2014

Production of Organometallic Frameworks in Least Possible Time September 23rd, 2014

New star-shaped molecule breakthrough: Scientists at The University of Manchester have generated a new star-shaped molecule made up of interlocking rings, which is the most complex of its kind ever created September 22nd, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE