Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nature, nanotechnology fuse in electric yarn that detects blood

This carbon-nanotube coated smart yarn can conduct enough electricity from a battery to power a light-emitting diode device. Researchers can use its conductivity to design garments that detect blood.
This carbon-nanotube coated smart yarn can conduct enough electricity from a battery to power a light-emitting diode device. Researchers can use its conductivity to design garments that detect blood.

Abstract:
A carbon nanotube-coated "smart yarn" that conducts electricity could be woven into soft fabrics that detect blood and monitor health, engineers at the University of Michigan have demonstrated.

Nature, nanotechnology fuse in electric yarn that detects blood

ANN ARBOR, MI | Posted on December 15th, 2008

"Currently, smart textiles are made primarily of metallic or optical fibers. They're fragile. They're not comfortable. Metal fibers also corrode. There are problems with washing such electronic textiles. We have found a much simpler way---an elegant way---by combining two fibers, one natural and one created by nanotechnology," said Nicholas Kotov, a professor in the departments of Chemical Engineering, Materials Science and Engineering and Biomedical Engineering.

Kotov and Bongsup Shim, a doctoral student in the Department of Chemical Engineering, are among the co-authors of a paper on this material currently published online in Nano Letters.

To make these "e-textiles," the researchers dipped 1.5-millimeter thick cotton yarn into a solution of carbon nanotubes in water and then into a solution of a special sticky polymer in ethanol. After being dipped just a few times into both solutions and dried, the yarn was able to conduct enough power from a battery to illuminate a light-emitting diode device.

"This turns out to be very easy to do," Kotov said. "After just a few repetitions of the process, this normal cotton becomes a conductive material because carbon nanotubes are conductive."

The only perceptible change to the yarn is that it turned black, due to the carbon. It remained pliable and soft.

In order to put this conductivity to use, the researchers added the antibody anti-albumin to the carbon nanotube solution. Anti-albumin reacts with albumin, a protein found in blood. When the researchers exposed their anti-albumin-infused smart yarn to albumin, they found that the conductivity significantly increased. Their new material is more sensitive and selective as well as more simple and durable than other electronic textiles, Kotov said.

Clothing that can detect blood could be useful in high-risk professions, the researchers say. An unconscious firefighter, ambushed soldier, or police officer in an accident, for example, couldn't send a distress signal to a central command post. But the smart clothing would have this capability.

Kotov says a communication device such as a mobile phone could conceivably transmit information from the clothing to a central command post.

"The concept of electrically sensitive clothing made of carbon-nanotube-coated cotton is flexible in implementations and can be adapted for a variety of health monitoring tasks as well as high performance garments," Kotov said.

It is conceivable that clothes made out of this material could be designed to harvest energy or store it, providing power for small electronic devices, but such developments are many years away and pose difficult challenges, the engineers say.

The paper published online in Nano Letters is titled, "Smart Electronic Yarns and Wearable Fabrics for Human Biomonitoring Made by Carbon Nanotube Coating with Polyelectrolytes." Other contributors are with Jiangnan University in China.

This research was funded by the National Science Foundation, the Office of Naval Research, the Air Force Office of Scientific Research and the National Natural Science Foundation of China.

For more information: Nicholas Kotov: www.engin.umich.edu/dept/cheme/people/kotov.html

####

About University of Michigan
The University of Michigan College of Engineering is ranked among the top engineering schools in the country. At more than $130 million annually, its engineering research budget is one of largest of any public university. Michigan Engineering is home to 11 academic departments and a National Science Foundation Engineering Research Center. The college plays a leading role in the Michigan Memorial Phoenix Energy Institute and hosts the world class Lurie Nanofabrication Facility. For more information, visit: www.engin.umich.edu.

For more information, please click here

Contacts:
Nicole Casal Moore

734-647-1838

Copyright © University of Michigan

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Production of Zirconium Carbide Nanoparticles at Low Temperature without Thermal Operations July 5th, 2015

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Nanotubes/Buckyballs/Fullerenes

Discovery of nanotubes offers new clues about cell-to-cell communication July 2nd, 2015

NIST Group Maps Distribution of Carbon Nanotubes in Composite Materials July 2nd, 2015

NIST ‘How-To’ Website Documents Procedures for Nano-EHS Research and Testing July 1st, 2015

Cellulose from wood can be printed in 3-D June 17th, 2015

Nanomedicine

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Iranian Scientists Find Simple, Economic Method to Synthesize Antibacterial Nanoparticles July 2nd, 2015

Leti Announces Launch of First European Nanomedicine Characterisation Laboratory: Project Combines Expertise of 9 Partners in 8 Countries to Foster Nanomedicine Innovation and Facilitate Regulatory Approval July 1st, 2015

Sensors

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

New micro-supercapacitor structure inspired by the intricate design of leaves: A team of scientists in Korea has devised a new method for making a graphene film for supercapacitors July 2nd, 2015

Carnegie Mellon chemists characterize 3-D macroporous hydrogels: Methods will allow researchers to develop new 'smart' materials June 30th, 2015

Discoveries

Production of Zirconium Carbide Nanoparticles at Low Temperature without Thermal Operations July 5th, 2015

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Materials/Metamaterials

Production of Zirconium Carbide Nanoparticles at Low Temperature without Thermal Operations July 5th, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

New technology using silver may hold key to electronics advances July 2nd, 2015

NIST Group Maps Distribution of Carbon Nanotubes in Composite Materials July 2nd, 2015

Announcements

Production of Zirconium Carbide Nanoparticles at Low Temperature without Thermal Operations July 5th, 2015

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Military

Graphene flexes its electronic muscles: Rice-led researchers calculate electrical properties of carbon cones, other shapes June 30th, 2015

The peaks and valleys of silicon: Team of USC Viterbi School of Engineering Researchers introduce new layered semiconducting materials as silicon alternative June 27th, 2015

Opening a new route to photonics Berkeley lab researchers find way to control light in densely packed nanowaveguides June 27th, 2015

World’s 1st Full-Color, Flexible, Skin-Like Display Developed at UCF June 24th, 2015

Textiles/Clothing

World’s 1st Full-Color, Flexible, Skin-Like Display Developed at UCF June 24th, 2015

Cellulose from wood can be printed in 3-D June 17th, 2015

Researchers create transparent, stretchable conductors using nano-accordion structure June 16th, 2015

Industrial Nanotech, Inc. Continues Global Development Focus on Original Equipment Manufacturer (OEM) Applications: Industrial Nanotech Continues Connecting With Manufacturers Who Seek Out Their Patented Thermal Insulation and Protective Coatings June 11th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project