Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Nature, nanotechnology fuse in electric yarn that detects blood

This carbon-nanotube coated smart yarn can conduct enough electricity from a battery to power a light-emitting diode device. Researchers can use its conductivity to design garments that detect blood.
This carbon-nanotube coated smart yarn can conduct enough electricity from a battery to power a light-emitting diode device. Researchers can use its conductivity to design garments that detect blood.

Abstract:
A carbon nanotube-coated "smart yarn" that conducts electricity could be woven into soft fabrics that detect blood and monitor health, engineers at the University of Michigan have demonstrated.

Nature, nanotechnology fuse in electric yarn that detects blood

ANN ARBOR, MI | Posted on December 15th, 2008

"Currently, smart textiles are made primarily of metallic or optical fibers. They're fragile. They're not comfortable. Metal fibers also corrode. There are problems with washing such electronic textiles. We have found a much simpler way---an elegant way---by combining two fibers, one natural and one created by nanotechnology," said Nicholas Kotov, a professor in the departments of Chemical Engineering, Materials Science and Engineering and Biomedical Engineering.

Kotov and Bongsup Shim, a doctoral student in the Department of Chemical Engineering, are among the co-authors of a paper on this material currently published online in Nano Letters.

To make these "e-textiles," the researchers dipped 1.5-millimeter thick cotton yarn into a solution of carbon nanotubes in water and then into a solution of a special sticky polymer in ethanol. After being dipped just a few times into both solutions and dried, the yarn was able to conduct enough power from a battery to illuminate a light-emitting diode device.

"This turns out to be very easy to do," Kotov said. "After just a few repetitions of the process, this normal cotton becomes a conductive material because carbon nanotubes are conductive."

The only perceptible change to the yarn is that it turned black, due to the carbon. It remained pliable and soft.

In order to put this conductivity to use, the researchers added the antibody anti-albumin to the carbon nanotube solution. Anti-albumin reacts with albumin, a protein found in blood. When the researchers exposed their anti-albumin-infused smart yarn to albumin, they found that the conductivity significantly increased. Their new material is more sensitive and selective as well as more simple and durable than other electronic textiles, Kotov said.

Clothing that can detect blood could be useful in high-risk professions, the researchers say. An unconscious firefighter, ambushed soldier, or police officer in an accident, for example, couldn't send a distress signal to a central command post. But the smart clothing would have this capability.

Kotov says a communication device such as a mobile phone could conceivably transmit information from the clothing to a central command post.

"The concept of electrically sensitive clothing made of carbon-nanotube-coated cotton is flexible in implementations and can be adapted for a variety of health monitoring tasks as well as high performance garments," Kotov said.

It is conceivable that clothes made out of this material could be designed to harvest energy or store it, providing power for small electronic devices, but such developments are many years away and pose difficult challenges, the engineers say.

The paper published online in Nano Letters is titled, "Smart Electronic Yarns and Wearable Fabrics for Human Biomonitoring Made by Carbon Nanotube Coating with Polyelectrolytes." Other contributors are with Jiangnan University in China.

This research was funded by the National Science Foundation, the Office of Naval Research, the Air Force Office of Scientific Research and the National Natural Science Foundation of China.

For more information: Nicholas Kotov: www.engin.umich.edu/dept/cheme/people/kotov.html

####

About University of Michigan
The University of Michigan College of Engineering is ranked among the top engineering schools in the country. At more than $130 million annually, its engineering research budget is one of largest of any public university. Michigan Engineering is home to 11 academic departments and a National Science Foundation Engineering Research Center. The college plays a leading role in the Michigan Memorial Phoenix Energy Institute and hosts the world class Lurie Nanofabrication Facility. For more information, visit: www.engin.umich.edu.

For more information, please click here

Contacts:
Nicole Casal Moore

734-647-1838

Copyright © University of Michigan

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New solar power material converts 90 percent of captured light into heat: SunShot Project aims to make solar cost competitive October 29th, 2014

Tiny carbon nanotube pores make big impact October 29th, 2014

Microrockets fueled by water neutralize chemical and biological warfare agents October 29th, 2014

Nanosafety research – there’s room for improvement October 29th, 2014

Nanotubes/Buckyballs

Tiny carbon nanotube pores make big impact October 29th, 2014

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Nanomedicine

'Electronic skin' could improve early breast cancer detection October 29th, 2014

Tiny carbon nanotube pores make big impact October 29th, 2014

Molecular beacons shine light on how cells 'crawl' October 27th, 2014

New nanodevice to improve cancer treatment monitoring October 27th, 2014

Sensors

Tiny carbon nanotube pores make big impact October 29th, 2014

MEMS & Sensors Technology Showcase: Finalists Announced for MEMS Executive Congress US 2014 October 23rd, 2014

Journal Nanotechnology Progress International (JONPI), 2014, Volume 5, Issue 1, pp 1-24 October 22nd, 2014

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Discoveries

New solar power material converts 90 percent of captured light into heat: SunShot Project aims to make solar cost competitive October 29th, 2014

Tiny carbon nanotube pores make big impact October 29th, 2014

Microrockets fueled by water neutralize chemical and biological warfare agents October 29th, 2014

Nanoparticles Display Ability to Improve Efficiency of Filters October 28th, 2014

Materials/Metamaterials

New solar power material converts 90 percent of captured light into heat: SunShot Project aims to make solar cost competitive October 29th, 2014

Watching the hidden life of materials: Ultrafast electron diffraction experiments open a new window on the microscopic world October 27th, 2014

Polymeric Scaffold Recreates Bladder Tissue October 27th, 2014

Iran to Hold 3rd Int'l Engineering Materials, Metallurgy Conference October 25th, 2014

Announcements

New solar power material converts 90 percent of captured light into heat: SunShot Project aims to make solar cost competitive October 29th, 2014

Tiny carbon nanotube pores make big impact October 29th, 2014

Microrockets fueled by water neutralize chemical and biological warfare agents October 29th, 2014

Nanosafety research – there’s room for improvement October 29th, 2014

Military

Microrockets fueled by water neutralize chemical and biological warfare agents October 29th, 2014

Breakthrough in molecular electronics paves the way for DNA-based computer circuits in the future: DNA-based programmable circuits could be more sophisticated, cheaper and simpler to make October 27th, 2014

NanoTechnology for Defense (NT4D) October 22nd, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Textiles/Clothing

New Nanocomposites Help Elimination of Toxic Dyes October 15th, 2014

Multifunctional Cotton Fabrics Produced in Iran Using Nanotechnology October 2nd, 2014

Teijin Aramid’s carbon nanotube fibers awarded with Paul Schlack prize: New generation super fibers bring wave of innovations to fiber market September 25th, 2014

Excitonic Dark States Shed Light on TMDC Atomic Layers: Berkeley Lab Discovery Holds Promise for Nanoelectronic and Photonic Applications September 11th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE