Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Alberta Center for Advanced MNT Products to Use Heidelberg Instruments' Maskless Lithography System for Fabrication of Microfluidics and Biosensors

Abstract:
Heidelberg Instruments announced the sale of a PG101 table top maskless laser patterning system to the Alberta Center for Advanced MNT Products, Canada. System will be used for prototyping and fabrication of various devices including biosensors and microfluidics.

Alberta Center for Advanced MNT Products to Use Heidelberg Instruments' Maskless Lithography System for Fabrication of Microfluidics and Biosensors

Alberta, Canada | Posted on December 13th, 2008

Heidelberg Instruments announced the sale of a PG101 table top maskless laser patterning system to the Alberta Center for Advanced MNT Products, Canada. System will be used for prototyping and fabrication of various devices including biosensors and microfluidics.

The PG101 is an extremely economical and easy to use Micro Pattern Generator for direct write applications as well as low volume mask making. It is also perfectly suitable for rapid prototyping of 2D and 3D microstructures on substrates up to 4 inches by 4 inches, and is capable of exposing high resolution features with an address grid of 40nm. The PG101 is capable of both Vector and Raster scanning exposure strategy.

The Alberta Centre for Advanced MNT Products (ACAMP) is the new Open Innovation Centre for Microsystems and Nanotechnology Enabled New Products and Industrial Applications. With multi-million dollar initial public investment announced by the Government of the Province of Alberta in May 2007 as part of its Alberta Nano Strategy, ACAMP is dedicated to building a world class capability that will grow to make Alberta a world-leading locale for the assembly and packaging of Micro-Nano-Technologies (MNT) enabled devices and development of new commercial products and industrial applications.

The Centre and its services will be accessible to Alberta researchers, start-up companies and established companies. Its focus will be on applying technologies to innovating products and new industrial applications where Alberta has either a strategic lead or opportunity or where these will be beneficial to key sectors such as life sciences, energy, and ICT. This it will do in collaboration with provincial, national and international supplier and value chain partners and networks. Core platform technologies include: MEMS, optics, RF-instrumentation, microfluidics and biosensors.

####

About Heidelberg Instruments GmbH
With an installation base of more than 300 systems in over 30 countries, Heidelberg Instruments is a world leader in production of high precision maskless lithography systems. These systems are used for direct writing and photomask production by some of the most prestigious universities and industry leaders in the areas of MEMS, BioMEMS, Nano Technology, ASICS, TFT, Plasma Displays, Micro Optics, and many other related applications.

For more information, please click here

Contacts:
ALEXANDER FOROZAN
Heidelberg Instruments
+496221343073

Copyright © PRWeb

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

A new approach to ultrafast light pulses: Unusual fluorescent materials could be used for rapid light-based communications systems September 19th, 2017

New quantum phenomena in graphene superlattices September 18th, 2017

Do titanium dioxide particles from orthopedic implants disrupt bone repair? September 16th, 2017

Microfluidics/Nanofluidics

Using light to propel water : With new method, MIT engineers can control and separate fluids on a surface using only visible light April 25th, 2017

Nano-SPEARs gently measure electrical signals in small animals: Rice University's tiny needles simplify data gathering to probe diseases, test drugs April 17th, 2017

Particle Works creates range of high performance quantum dots February 23rd, 2017

DNA 'barcoding' allows rapid testing of nanoparticles for therapeutic delivery February 7th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

New insights into nanocrystal growth in liquid: Understanding process that creates complex crystals important for energy applications September 14th, 2017

Magnetic cellular 'Legos' for the regenerative medicine of the future September 12th, 2017

First on-chip nanoscale optical quantum memory developed: Smallest-yet optical quantum memory device is a storage medium for optical quantum networks with the potential to be scaled up for commercial use September 11th, 2017

Sensors

Research shows how DNA molecules cross nanopores: Study could inform biosensors, manufacturing, and more September 5th, 2017

Leti and Partners in PiezoMAT Project Develop New Fingerprint Technology for Highly Reliable Security and ID Applications: Ultra-high Resolution Pressure Sensing Uses Matrices of Vertical Piezoelectric Nanowire To Reconstruct the Smallest Features of Human Fingerprints September 5th, 2017

New results reveal high tunability of 2-D material: Berkeley Lab-led team also provides most precise band gap measurement yet for hotly studied monolayer moly sulfide August 26th, 2017

DNA sensor system developed for specific and sensitive measurement of cancer-relevant enzyme activity August 23rd, 2017

Announcements

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

A new approach to ultrafast light pulses: Unusual fluorescent materials could be used for rapid light-based communications systems September 19th, 2017

New quantum phenomena in graphene superlattices September 18th, 2017

Do titanium dioxide particles from orthopedic implants disrupt bone repair? September 16th, 2017

Tools

Graphene based terahertz absorbers: Printable graphene inks enable ultrafast lasers in the terahertz range September 13th, 2017

Chemical hot spots: Scanning tunneling microscopy measurements identify active sites on catalyst surfaces September 7th, 2017

Phenom-World selects Deben to supply a tensile stage as an accessory to their range of desktop SEMs August 29th, 2017

New results reveal high tunability of 2-D material: Berkeley Lab-led team also provides most precise band gap measurement yet for hotly studied monolayer moly sulfide August 26th, 2017

Printing/Lithography/Inkjet/Inks/Bio-printing

Graphene based terahertz absorbers: Printable graphene inks enable ultrafast lasers in the terahertz range September 13th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Simultaneous Design and Nanomanufacturing Speeds Up Fabrication: Method enhances broadband light absorption in solar cells August 5th, 2017

Meniscus-assisted technique produces high efficiency perovskite PV films July 7th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project