Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Chemist tames longstanding electron computation problem

Abstract:
When the University of Chicago's David Mazziotti talks about chemistry, perhaps he is thinking about how the behavior of all of the electrons in a molecule can be anticipated from the behavior of just two of its electrons.

For 50 years theoretical chemists have puzzled over the problem of predicting many-electron chemistry with only two electrons, which many thought intractable and perhaps impossible to solve. Mazziotti, an associate professor in chemistry, will present a new approach to tuning his solution to the problem for exceptional computational accuracy and efficiency in the Dec. 12 issue of Physical Review Letters.

Chemist tames longstanding electron computation problem

Chicago, IL | Posted on December 11th, 2008

"We can do all these calculations using a desktop computer," Mazziotti said. "We're getting accuracy and efficiency that supercedes some of the traditional techniques, so it really opens up a whole new ballgame."

Scientists have grappled with the problem for decades because a detailed statistical description of electrons' positions in a molecule can reveal whether a particular chemical reaction will occur. But the number of electrons in an atom or molecule can range from 10 to hundreds or thousands.

Even the most powerful computers lack the power to perform these calculations, which become increasingly expensive as more electrons are added to the mix. The computational cost stems from the laws of quantum mechanics, the branch of physics that governs the behavior of atoms and molecules. Mazziotti's advance means that chemists will be able to compute the electronic properties of a given molecule with greater accuracy at a lower cost.

Mazziotti anticipates that his research tool will enable scientists to more rapidly solve a wide range of problems in chemistry, including the chemistry of free radicals. Free radicals are molecules with unpaired electrons that play a key role in reactions that deplete atmospheric ozone and create greenhouse gases. Radical-type reactions are also important in the design of new drugs and more efficient combustion engines.

Mazziotti began working on the problem of using two electrons to represent many electrons in the mid-1990s as a graduate student at Harvard University. His graduate school mentor, Nobel laureate Dudley Herschbach, has called the quest "a 'holy grail' of theoretical chemistry."

Speaking of Mazziotti's progress in 2006, Herschbach said that "David Mazziotti has made a major advance in fundamental theory."

Herschbach employed a football analogy to illustrate Mazziotti's method, known to theoretical chemists as the 2-electron Reduced Density Matrix (2-RDM) method.

In this analogy, a coach could automatically determine the actions of an entire team by simply plotting the motion of just two to three players: the quarterback and one running back/receiver, with auxiliary help from one lineman.

"His method requires dealing with just pairs and trios of electrons," Herschbach said.

The late Joseph Mayer, a professor in chemistry at the University of Chicago from 1946 until 1960, was one of the first scientists to propose doing electronic structure calculations for many-electron atoms and molecules by using just two electrons.

In the 2-RDM approach, one determines the probabilities for finding a pair of electrons at different locations in an atom or molecule. But a problem arises, Mazziotti said. "If one wants to work with these two-electron distributions, one has to make sure that they actually represent the many-electron system adequately."

Mazziotti has in fact developed several two-electron approaches that target different levels of accuracy and efficiency. The previous approaches tuned for maximum accuracy have applications to highly challenging problems like bi-radicals (molecules with two unpaired electrons), electron-rich materials, and molecular conductivity.

The latest tool extends independent work by Christian Kollmar at the Zernike Institute for Advanced Materials in the Netherlands as well as work with University of Chicago graduate student Eugene DePrince. It is tuned for high efficiency and impressive accuracy for applicability to a very wide range of chemical problems.

"We view 2-RDM theory as a platform that we can now tune, essentially, to get high accuracy or high efficiency or some combination of both of those for different molecular systems," Mazziotti said.

Last year Mazziotti published a book, Two-Electron Density Matrix Mechanics for Many-Electron Atoms and Molecules, which serves as a roadmap for scientists in his field. More than 20 scientists contributed chapters to the volume, which summarizes historical and recent advances in the field.

Supporting Mazziotti's work are the National Science Foundation, the American Chemical Society Petroleum Research Fund, Microsoft Corporation, the Dreyfus Foundation and the David and Lucile Packard Foundation.

####

For more information, please click here

Contacts:
Steve Koppes

773-702-8366

Copyright © University of Chicago

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

Chemistry

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides July 13th, 2018

The Institute of Applied Physics at the University of Tsukuba near Tokyo in Japan uses Deben's ARM2 detector to better understand catalytic reaction mechanisms June 27th, 2018

Quantum Interference May Be Key to Smaller Insulators: Breakthrough could jumpstart further miniaturization of transistors June 6th, 2018

Density gradient ultracentrifugation for colloidal nanostructures separation and investigation June 5th, 2018

Discoveries

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Announcements

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Quantum nanoscience

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

Making quantum puddles: Physicists discover how to create the thinnest liquid films ever June 13th, 2018

Detecting the birth and death of a phonon June 7th, 2018

Quantum Interference May Be Key to Smaller Insulators: Breakthrough could jumpstart further miniaturization of transistors June 6th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project