Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Intel Completes Next Generation, 32nm Process Development Phase

Abstract:
Intel Corporation has completed the development phase of its next-generation manufacturing process that further shrinks chip circuitry to 32 nanometers (a billionth of a meter). The company is on track for production readiness of this future generation using even more energy-efficient, denser and higher performing transistors in the fourth quarter of 2009.

Intel Completes Next Generation, 32nm Process Development Phase

SANTA CLARA, CA | Posted on December 10th, 2008

Intel will provide a multitude of technical details around the 32nm process technology along with several other topics during presentations at the International Electron Devices Meeting (IEDM) next week in San Francisco. Finishing the development phase for the company's 32nm process technology and production readiness in this timeframe means that Intel remains on pace with its ambitious product and manufacturing cadence referred to as the company's "tick-tock" strategy.

That plan revolves around introducing an entirely new processor microarchitecture alternating with a cutting edge manufacturing process about every 12 months, an effort unmatched in the industry. Producing 32nm chips next year would mark the fourth consecutive year Intel has met its goal.

The Intel 32nm paper and presentation describe a logic technology that incorporates second-generation high-k + metal gate technology, 193nm immersion lithography for critical patterning layers and enhanced transistor strain techniques. These features enhance the performance and energy efficiency of Intel processors. Intel's manufacturing process has the highest transistor performance and the highest transistor density of any reported 32nm technology in the industry.

"Our manufacturing prowess and resulting products have helped us widen our lead in computing performance and battery life for Intel-based laptops, servers and desktops," said Mark Bohr, Intel Senior Fellow and director of process architecture and integration. "As we've shown this year, the manufacturing strategy and execution have also given us the ability to create entirely new product lines for MIDs, CE equipment, embedded computers and netbooks."

Other Intel IEDM papers will describe a low power system on chip version of Intel's 45nm process, transistors based on compound semiconductors, substrate engineering to improve performance of 45nm transistors, integrating chemical mechanical polish for the 45nm node and beyond; and, integrating an array of silicon photonics modulators. Intel will also participate in a short course on 22nm CMOS Technology.

Intel and the Intel logo are trademarks of Intel Corporation in the United States and other countries.

####

For more information, please click here

Contacts:
Intel Corporation
Megan Langer
503-712-4305

Copyright © Business Wire 2008

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Possible Futures

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Chip Technology

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Alloying materials of different structures offers new tool for controlling properties June 19th, 2017

GLOBALFOUNDRIES®, ON Semiconductor Deliver the Industry’s Lowest Power Bluetooth® Low Energy SoC Family: 55nm LPx RF-enabled platform, with SST’s highly reliable embedded SuperFlash®, provides low power and cost for IoT and “Connected” Health and Wellness Devices June 19th, 2017

New prospects for universal memory -- high speed of RAM and the capacity of flash: Thin films created at MIPT could be the basis for future development of ReRAM June 17th, 2017

Announcements

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project