Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > New Hybrid Nanostructures Detect Nanoscale Magnetism: Research could pave way for new data storage devices, drug delivery systems

A scanning electron micrograph of cobalt nanoclusters embedded in multi-walled carbon nanotubes. Researchers at Rensselaer used these new hybrid structures, the first of their kind, to detect magnetism at the nanoscale.
Photo Credit: Saikat Talapatra/Caterina Soldano
A scanning electron micrograph of cobalt nanoclusters embedded in multi-walled carbon nanotubes. Researchers at Rensselaer used these new hybrid structures, the first of their kind, to detect magnetism at the nanoscale.
Photo Credit: Saikat Talapatra/Caterina Soldano

Abstract:
A key challenge of nanotechnology research is investigating how different materials behave at lengths of merely one-billionth of a meter. When shrunk to such tiny sizes, many everyday materials exhibit interesting and potentially beneficial new properties.

New Hybrid Nanostructures Detect Nanoscale Magnetism: Research could pave way for new data storage devices, drug delivery systems

Troy, NY | Posted on December 8th, 2008

Magnetic behavior is one such phenomenon that can change significantly depending on the size of the material. However, the sheer challenge of observing the magnetic properties of nanoscale material has impeded further study of the topic.

Researchers at Rensselaer Polytechnic Institute have developed and demonstrated a new method for detecting the magnetic behaviors of nanomaterials. They created a new process for creating a single multi-walled carbon nanotube that is embedded with cobalt nanostructures. The cobalt clusters measure from 1 nanometer to 10 nanometers.

After a series of experiments, the research team has concluded that the electrical conductance of carbon nanotubes is sensitive enough to detect and be affected by trace amounts of magnetic activity, such as those present in the embedded cobalt nanostructures. It is believed to be the first instance of demonstrating the detection of magnetic fields of such small magnets using an individual carbon nanotube.

Results of the study were reported in the paper "Detection of Nanoscale Magnetic Activity Using a Single Carbon Nanotube" recently published by Nano Letters.

"Since the cobalt clusters in our system are embedded inside the nanotube rather than on the surface, they do not cause electron scattering and thus do not seem to impact the attractive conductive properties of the host carbon nanotube," said Swastik Kar, research assistant professor in Rensselaer's Department of Physics, Applied Physics, & Astronomy, who led the project. "From a fundamental point of view, these hybrid nanostructures belong to a new class of magnetic materials."

"These novel hybrid nanostructures open up new avenues of research in fundamental and applied physics, and pave the way for increased functionality in carbon nanotube electronics utilizing the magnetic degree of freedom that could give rise to important spintronics applications," said Saroj Nayak, an associate professor in Rensselaer's Department of Department of Physics, Applied Physics, and Astronomy, who also contributed to the project.

Potential applications for such a material include new generations of nanoscale conductance sensors, along with new advances in digital storage devices, spintronics, and selective drug delivery components.

Co-authors of the paper include Caterina Soldano, formerly a graduate student at Rensselaer who is now a postdoctoral research associate at the Centre d'Elaboration de Matťriaux et d'Etudes Structurales in Tolouse, France; Professor Saikat Talapatra of the Physics Department of Southern Illinois University, Carbondale; and Prof. P.M. Ajayan of the Rice University Department of Mechanical Engineering and Materials Science.

Researchers received funding for the project from the New York State Interconnect Focus Center at Rensselaer.

####

About Rensselaer Polytechnic Institute
Rensselaer Polytechnic Institute, founded in 1824, is the nationís oldest technological university. The university offers bachelorís, masterís, and doctoral degrees in engineering, the sciences, information technology, architecture, management, and the humanities and social sciences. Institute programs serve undergraduates, graduate students, and working professionals around the world. Rensselaer faculty are known for pre-eminence in research conducted in a wide range of fields, with particular emphasis in biotechnology, nanotechnology, information technology, and the media arts and technology. The Institute is well known for its success in the transfer of technology from the laboratory to the marketplace so that new discoveries and inventions benefit human life, protect the environment, and strengthen economic development.

For more information, please click here

Contacts:
Michael Mullaney
Phone: (518) 276-6161
E-mail:

Copyright © Rensselaer Polytechnic Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Techís Contribution Includes Litenís Knowhow in Magnetic Materials and Simulation And Letiís Expertise in Wide-bandgap Semiconductors October 20th, 2017

Spintronics

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Rice U. lab surprised by ultraflat magnets: Researchers create atom-thick alloys with unanticipated magnetic properties October 13th, 2017

A Sea of Spinning Electrons: Rutgers-led discovery could spawn a wave of new electronic devices October 2nd, 2017

Smart multi-layered magnetic material acts as an electric switch: New study reveals characteristic of islands of magnetic metals between vacuum gaps, displaying tunnelling electric current March 1st, 2017

Memory Technology

Injecting electrons jolts 2-D structure into new atomic pattern: Berkeley Lab study is first to show potential of energy-efficient next-gen electronic memory October 13th, 2017

First on-chip nanoscale optical quantum memory developed: Smallest-yet optical quantum memory device is a storage medium for optical quantum networks with the potential to be scaled up for commercial use September 11th, 2017

High-speed quantum memory for photons September 9th, 2017

Fast magnetic writing of data September 7th, 2017

Nanotubes/Buckyballs/Fullerenes/Nanorods

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

How to draw electricity from the bloodstream: A one-dimensional fluidic nanogenerator with a high power-conversion efficiency September 11th, 2017

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

Regulation of two-dimensional nanomaterials: New driving force for lithium-ion batteries July 26th, 2017

Nanomedicine

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Arrowhead Pharmaceuticals to Present Preclinical Data on ARO-AAT at The Liver Meeting(R) October 10th, 2017

Arrowhead to Present at Chardan Gene Therapy Conference October 3rd, 2017

'CRISPR-Gold' fixes Duchenne muscular dystrophy mutation in mice October 3rd, 2017

Sensors

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Single Ďsolitonsí promising for optical technologies October 9th, 2017

Two dimensional materials: Advanced molybdenum selenide near infrared phototransistors September 27th, 2017

Discoveries

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

Announcements

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Techís Contribution Includes Litenís Knowhow in Magnetic Materials and Simulation And Letiís Expertise in Wide-bandgap Semiconductors October 20th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project