Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > HRL Laboratories Demonstrates World's First Graphene RF Field-Effect Transistors Under DARPA's CERA Program

Abstract:
HRL Laboratories, LLC, demonstrated the first graphene field-effect transistors (FETs) using epitaxial graphene film operating in the radio frequency (RF) range. Prior efforts with graphene FETs used exfoliated graphene films. The HRL milestone is a key step toward wafer-scale high-speed RF FETs, which could lead to a new generation of carbon-based RF integrated circuits for ultra-high-speed, ultra-low-power applications.

HRL Laboratories Demonstrates World's First Graphene RF Field-Effect Transistors Under DARPA's CERA Program

Malibu, CA | Posted on December 5th, 2008

HRL Laboratories, LLC, announced today it has demonstrated the world's first graphene RF field effect transistors (FETs) as part of the Carbon Electronics for RF Applications, or CERA program. The milestone is the first in the proposed 51-month, three-phase program to develop a new generation of carbon-based radio-frequency (RF) integrated circuits for ultra-high-speed, ultra-low-power applications.

The goal of the effort, sponsored by the Defense Advanced Research Projects Agency (DARPA) and under the management of the Space and Naval Warfare Systems Center (SPAWAR), is to exploit the unique qualities of graphene carbon to create components that will enable unprecedented capabilities in high-bandwidth communications, imaging, and radar systems. HRL is collaborating with a group of universities, commercial companies and the Naval Research Laboratory (NRL) on the program.

While graphene FETs have been demonstrated before, most used exfoliated graphene films. "HRL, working with the NRL, demonstrated graphene FETs using epitaxial film operating in the RF frequency range," said Jeong-sun Moon, Senior Research Scientist with the Microelectronics Laboratory at HRL. "This is a key step toward wafer-scale high-speed graphene RF FETs that operate in the RF domain."

The military's ability to develop sophisticated imaging and communications systems is hindered by RF component cost, limited resolution, and high power dissipation. A graphene-on-Silicon platform could revolutionize a number of military applications because of its high performance, scalability, integration and low cost.

Graphene is a single layer of carbon atoms densely packed in a honeycomb crystalline lattice configuration--like chicken wire on an atomic scale. The advantages of this configuration are its high current-carrying capacity, excellent thermal conductivity and low-voltage operational potential.

Moon said the current results are very promising. "The next step will be to continue to optimize material synthesis and device processing to see if we can harness the unique properties of graphene to make a new generation, state-of-the-art technology for future high-speed, low-cost military RF systems-on-chips," he said.

In upcoming phases of the project, the HRL team will fabricate FETS on 100-mm wafers and then scale up the process to 200-mm wafers to create a demonstration prototype of the new generation of carbon-based RF integrated circuits.

####

About HRL Laboratories, LLC
HRL Laboratories, LLC, Malibu, California (www.hrl.com) is a corporate research-and-development laboratory owned by The Boeing Company and General Motors specializing in research into sensors and materials, information and systems sciences, applied electromagnetics, and microelectronics. HRL provides custom research and development and performs additional R&D contract services for its LLC member companies, the U.S. government, and other commercial companies.

For more information, please click here

Contacts:
Michele Durant
HRL Laboratories
310 317-5321

Copyright © PRWeb™

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Toyocolor to Launch New Carbon Nanotube Materials at nano tech 2015 January 24th, 2015

NANOPOSTER 2015 - 5th Virtual Nanotechnology Conference - call for abstracts January 24th, 2015

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

Govt.-Legislation/Regulation/Funding/Policy

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

Scientists 'bend' elastic waves with new metamaterials that could have commercial applications: Materials could benefit imaging and military enhancements such as elastic cloaking January 23rd, 2015

Harper Government Supports Research Innovation in Western Canada January 22nd, 2015

EnvisioNano: An image contest hosted by the National Nanotechnology Initiative (NNI) January 22nd, 2015

Chip Technology

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

New method to generate arbitrary optical pulses January 21st, 2015

New signal amplification process set to transform communications, imaging, computing: UC San Diego researchers discover a mechanism to amplify signals in optoelectronic systems that is far more efficient than standard processes January 21st, 2015

Solving an organic semiconductor mystery: Berkeley Lab researchers uncover hidden structures in domain interfaces that hamper performance January 16th, 2015

Announcements

Toyocolor to Launch New Carbon Nanotube Materials at nano tech 2015 January 24th, 2015

NANOPOSTER 2015 - 5th Virtual Nanotechnology Conference - call for abstracts January 24th, 2015

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

Military

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

Scientists 'bend' elastic waves with new metamaterials that could have commercial applications: Materials could benefit imaging and military enhancements such as elastic cloaking January 23rd, 2015

Laser-generated surface structures create extremely water-repellent metals: Super-hydrophobic properties could lead to applications in solar panels, sanitation and as rust-free metals January 20th, 2015

Solving an organic semiconductor mystery: Berkeley Lab researchers uncover hidden structures in domain interfaces that hamper performance January 16th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE