Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Ascent Solar Achieves Significant Efficiency Milestone

Abstract:
Ascent Solar Technologies, Inc. (NASDAQ:ASTI), a developer of state of the art flexible thin-film solar modules, today announced that it has achieved greater than 9.5% efficiency for its flexible Copper, Indium, Gallium, Selenide (CIGS) monolithically integrated modules.

Ascent Solar Achieves Significant Efficiency Milestone

LITTLETON, CO | Posted on December 3rd, 2008

The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) has independently verified that the modules measured as high as 9.64% in conversion efficiency. The modules tested at NREL were produced from the company's 1.5MW pilot production line.

"We have been working to achieve these efficiencies during our internal optimization process, and we view this achievement as a tremendous breakthrough. The test modules measure six inches wide by one foot long and serves as our building block for portable power and building integrated photovoltaic (BIPV) products," said Dr. Prem Nath, Sr. Vice President of Manufacturing for Ascent Solar. "Our goal continues to be the commercialization of flexible thin-film CIGS modules using a plastic substrate, which we hope will uniquely position Ascent Solar to provide light weight flexible photovoltaic material at low cost."

Lawrence Kazmerksi, Executive Director at NREL, said, "This is significant. Many doubted that a thin-film CIGS solar cell-on-plastic technology could be possible. Ascent Solar not only achieved this, but they now have confirmed efficiencies at NREL on fully integrated, monolithic prototype modules near 10%. This appears to be a substantial leap toward realizing high-performance, inexpensive thin-film solar photovoltaics."

About National Renewable Energy Laboratory:

The National Renewable Energy Laboratory (NREL) is the nation's primary laboratory for renewable energy and energy efficiency research and development (R&D).

####

About Ascent Solar Technologies, Inc.
Ascent Solar Technologies, Inc. is a developer of thin-film photovoltaic modules with substrate materials that can be more flexible and affordable than most traditional solar panels. Ascent Solar modules can be directly integrated into standard building materials, space applications, consumer electronics for portable power or configured as stand alone modules for large scale terrestrial deployment. Ascent Solar is located in Littleton, Colorado.

Forward Looking Statements

Statements in this press release that are not statements of historical or current fact constitute "forward-looking statements." Such forward-looking statements involve known and unknown risks, uncertainties and other unknown factors that could cause the Company's actual operating results to be materially different from any historical results or from any future results expressed or implied by such forward-looking statements. In addition to statements that explicitly describe these risks and uncertainties, readers are urged to consider statements that contain terms such as "believes," "belief," "expects," "expect," "intends," "intend," "anticipate," "anticipates," "plans," "plan," to be uncertain and forward-looking. The forward-looking statements contained herein are also subject generally to other risks and uncertainties that are described from time to time in the Company's filings with the Securities and Exchange Commission.

For more information, please click here

Contacts:
For Ascent Solar Technologies, Inc.
Brian Blackman
832-515-0928 (Investor Relations)

or
Brand Fortified Public Relations
Kelly Brandner
303-289-4303 (Media)

Copyright © Business Wire 2008

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Scientists change properties of zeolites to improve hemodialysis July 29th, 2016

Novel state of matter: Observation of a quantum spin liquid July 29th, 2016

A new type of quantum bits July 29th, 2016

Lonely atoms, happily reunited July 29th, 2016

Laboratories

New nontoxic process promises larger ultrathin sheets of 2-D nanomaterials July 27th, 2016

New lithium-oxygen battery greatly improves energy efficiency, longevity: New chemistry could overcome key drawbacks of lithium-air batteries July 26th, 2016

An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design July 24th, 2016

Scientists develop way to upsize nanostructures into light, flexible 3-D printed materials: Virginia Tech, Livermore National Lab researchers develop hierarchical 3-D printed metallic materials July 20th, 2016

Thin films

Cambridge Advanced Imaging Centre praises support film consistency and quality from EM Resolutions July 5th, 2016

Novel capping strategy improves stability of perovskite nanocrystals: Study addresses instability issues with organometal-halide perovskites, a promising class of materials for solar cells, LEDs, and other applications June 13th, 2016

New nanomaterial offers promise in bendable, wearable electronic devices: Electroplated polymer makes transparent, highly conductive, ultrathin film June 13th, 2016

Perovskite solar cells surpass 20 percent efficiency: EPFL researchers are pushing the limits of perovskite solar cell performance by exploring the best way to grow these crystals June 13th, 2016

Announcements

Scientists change properties of zeolites to improve hemodialysis July 29th, 2016

Novel state of matter: Observation of a quantum spin liquid July 29th, 2016

A new type of quantum bits July 29th, 2016

Lonely atoms, happily reunited July 29th, 2016

Energy

New nontoxic process promises larger ultrathin sheets of 2-D nanomaterials July 27th, 2016

Designing climate-friendly concrete, from the nanoscale up: New understanding of concrete’s properties could increase lifetime of the building material, decrease emissions July 25th, 2016

An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design July 24th, 2016

Researchers discover key mechanism for producing solar cells: Better understanding of perovskite solar cells could boost widespread use July 21st, 2016

Solar/Photovoltaic

New nontoxic process promises larger ultrathin sheets of 2-D nanomaterials July 27th, 2016

An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design July 24th, 2016

Researchers discover key mechanism for producing solar cells: Better understanding of perovskite solar cells could boost widespread use July 21st, 2016

The future of perovskite solar cells has just got brighter -- come rain or shine: Korean researchers at POSTECH have succeeded in developing high-efficiency perovskite solar cells that retain excellent performance over two months in a very humid condition July 21st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic