Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Ascent Solar Achieves Significant Efficiency Milestone

Abstract:
Ascent Solar Technologies, Inc. (NASDAQ:ASTI), a developer of state of the art flexible thin-film solar modules, today announced that it has achieved greater than 9.5% efficiency for its flexible Copper, Indium, Gallium, Selenide (CIGS) monolithically integrated modules.

Ascent Solar Achieves Significant Efficiency Milestone

LITTLETON, CO | Posted on December 3rd, 2008

The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) has independently verified that the modules measured as high as 9.64% in conversion efficiency. The modules tested at NREL were produced from the company's 1.5MW pilot production line.

"We have been working to achieve these efficiencies during our internal optimization process, and we view this achievement as a tremendous breakthrough. The test modules measure six inches wide by one foot long and serves as our building block for portable power and building integrated photovoltaic (BIPV) products," said Dr. Prem Nath, Sr. Vice President of Manufacturing for Ascent Solar. "Our goal continues to be the commercialization of flexible thin-film CIGS modules using a plastic substrate, which we hope will uniquely position Ascent Solar to provide light weight flexible photovoltaic material at low cost."

Lawrence Kazmerksi, Executive Director at NREL, said, "This is significant. Many doubted that a thin-film CIGS solar cell-on-plastic technology could be possible. Ascent Solar not only achieved this, but they now have confirmed efficiencies at NREL on fully integrated, monolithic prototype modules near 10%. This appears to be a substantial leap toward realizing high-performance, inexpensive thin-film solar photovoltaics."

About National Renewable Energy Laboratory:

The National Renewable Energy Laboratory (NREL) is the nation's primary laboratory for renewable energy and energy efficiency research and development (R&D).

####

About Ascent Solar Technologies, Inc.
Ascent Solar Technologies, Inc. is a developer of thin-film photovoltaic modules with substrate materials that can be more flexible and affordable than most traditional solar panels. Ascent Solar modules can be directly integrated into standard building materials, space applications, consumer electronics for portable power or configured as stand alone modules for large scale terrestrial deployment. Ascent Solar is located in Littleton, Colorado.

Forward Looking Statements

Statements in this press release that are not statements of historical or current fact constitute "forward-looking statements." Such forward-looking statements involve known and unknown risks, uncertainties and other unknown factors that could cause the Company's actual operating results to be materially different from any historical results or from any future results expressed or implied by such forward-looking statements. In addition to statements that explicitly describe these risks and uncertainties, readers are urged to consider statements that contain terms such as "believes," "belief," "expects," "expect," "intends," "intend," "anticipate," "anticipates," "plans," "plan," to be uncertain and forward-looking. The forward-looking statements contained herein are also subject generally to other risks and uncertainties that are described from time to time in the Company's filings with the Securities and Exchange Commission.

For more information, please click here

Contacts:
For Ascent Solar Technologies, Inc.
Brian Blackman
832-515-0928 (Investor Relations)

or
Brand Fortified Public Relations
Kelly Brandner
303-289-4303 (Media)

Copyright © Business Wire 2008

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

The laser pulse that gets shorter all by itself: Ultrashort laser pulses have become an indispensable tool for atomic and molecular research; A new technology makes creating short infrared pulses easy and cheap January 27th, 2015

New pathway to valleytronics January 27th, 2015

Stomach acid-powered micromotors get their first test in a living animal January 27th, 2015

Entanglement on a chip: Breakthrough promises secure communications and faster computers January 27th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

Laboratories

New pathway to valleytronics January 27th, 2015

Self-assembled nanotextures create antireflective surface on silicon solar cells: Nanostructured surface textures-with shapes inspired by the structure of moths' eyes-prevent the reflection of light off silicon, improving conversion of sunlight to electricity January 21st, 2015

Thin films

Electronic circuits with reconfigurable pathways closer to reality January 26th, 2015

New Molecular Beam Epitaxy deposition equipment at the ICN2 January 22nd, 2015

Announcements

The laser pulse that gets shorter all by itself: Ultrashort laser pulses have become an indispensable tool for atomic and molecular research; A new technology makes creating short infrared pulses easy and cheap January 27th, 2015

New pathway to valleytronics January 27th, 2015

Entanglement on a chip: Breakthrough promises secure communications and faster computers January 27th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

Energy

Visualizing interacting electrons in a molecule: Scientists at Aalto University and the University of Zurich have succeeded in directly imaging how electrons interact within a single molecule January 26th, 2015

Iranian Researchers Boost Solar Cells Efficiency Using Anti-Aggregates January 26th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

New technique helps probe performance of organic solar cell materials January 23rd, 2015

Solar/Photovoltaic

Visualizing interacting electrons in a molecule: Scientists at Aalto University and the University of Zurich have succeeded in directly imaging how electrons interact within a single molecule January 26th, 2015

Iranian Researchers Boost Solar Cells Efficiency Using Anti-Aggregates January 26th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

New technique helps probe performance of organic solar cell materials January 23rd, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE