Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Oxford Nanopore Technologies announces participation in €12m READNA project

Abstract:
- Consortium to improve DNA analysis technologies launches under EU Seventh Framework Programme (FP7) -

Oxford Nanopore Technologies announces participation in €12m READNA project

Oxford, UK | Posted on December 3rd, 2008

Oxford Nanopore Technologies ("Oxford Nanopore") today announced its participation in the Revolutionary Approaches and Devices for Nucleic Acid analysis project (READNA). The newly-launched READNA consortium includes researchers from 16 academic and industrial institutions and will receive €12m in funding over four years, under the European Union's Seventh Framework Programme (FP7).

As part of the consortium, Oxford Nanopore will receive €730,000 in grant funding to support the development of its nanopore technology into an early exonuclease/nanopore DNA sequencing system. The Company will also work on projects to integrate protein nanopores and solid-state materials for the further progression of nanopore sequencing, the development of a new technique that uses nanopores for genome-wide methylation studies and the development of droplet-based bilayer arrays for rapid, multiplexed genotyping.

Oxford Nanopore will collaborate closely with researchers from the University of Oxford, including Professor Hagan Bayley's Chemical Biology group, the Biological Physics group and the Wellcome Trust Centre for Human Genetics. The University will receive €2m to support READNA projects.

"We are proud to be part of the READNA project, which includes representatives from Europe's leading research institutions and developers of genomic technologies," said Dr Gordon Sanghera, CEO of Oxford Nanopore. "The consortium aims to revolutionise nucleic acid analysis. Our role as the developer of a new generation of sequencing technology, based on nanopores, is critical to the project. With support also being given to our academic collaborators, we believe we are in the best position to deliver a meaningful improvement in sequencing technology with our label-free, single-molecule nanopore system."

The READNA consortium aims to revolutionise the analysis of nucleic acids by the improvement of existing methods and the development of new technologies.

Specific goals of the project include:

* Development of a new generation of rapid and cost effective sequencing methodologies
* Single molecule detection of DNA molecules in nanosystems using nanopores and nanochannels
* Improvement of elements of existing sequencing systems
* Methods for the detection and the enrichment of rare mutations from peripheral patient samples
* Combining RNA and DNA analysis in a single analytical device
* Development of methods for genome-wide analysis of DNA methylation at a high resolution
* Development of cost-effective high resolution HLA typing
* Development of assays for effective high-resolution genotyping of copy number variations

Overall, the project aims to progress towards a target of sequencing a complete human genome for €1000; the promotion of new sequencing technologies is central to this goal.

####

About Oxford Nanopore Technologies
Oxford Nanopore is developing nanopore technology, a revolutionary method of molecular detection and analysis with potential for DNA sequencing, diagnostics, drug development and defence applications.

For more information, please click here

Contacts:
Oxford Nanopore Technologies
Dr Gordon Sanghera
+44 (0) 870 486 1966
CEO
or
Zoe McDougall
+44 (0) 870 486 1966
Communications

Copyright © Business Wire 2008

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Physicists solve quantum tunneling mystery: ANU media release: An international team of scientists studying ultrafast physics have solved a mystery of quantum mechanics, and found that quantum tunneling is an instantaneous process May 27th, 2015

Nanotechnology identifies brain tumor types through MRI 'virtual biopsy' in animal studies: If results are confirmed in humans, tumor cells could someday be diagnosed by MRI imaging and treated with tumor-specific IV injections; new NIH grant will fund future study May 27th, 2015

Who needs water to assemble DNA? Non-aqueous solvent supports DNA nanotechnology May 27th, 2015

Controlled Release of Anticorrosive Materials in Spot by Nanocarriers May 27th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Nanotechnology identifies brain tumor types through MRI 'virtual biopsy' in animal studies: If results are confirmed in humans, tumor cells could someday be diagnosed by MRI imaging and treated with tumor-specific IV injections; new NIH grant will fund future study May 27th, 2015

Who needs water to assemble DNA? Non-aqueous solvent supports DNA nanotechnology May 27th, 2015

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Nanomedicine

New electronic stent could provide feedback and therapy — then dissolve May 27th, 2015

Arrowhead to Present at Jefferies 2015 Healthcare Conference May 27th, 2015

Seeing the action: UCSB researchers develop a novel device to image the minute forces and actions involved in cell membrane hemifusion May 27th, 2015

Nanotechnology identifies brain tumor types through MRI 'virtual biopsy' in animal studies: If results are confirmed in humans, tumor cells could someday be diagnosed by MRI imaging and treated with tumor-specific IV injections; new NIH grant will fund future study May 27th, 2015

Announcements

Physicists solve quantum tunneling mystery: ANU media release: An international team of scientists studying ultrafast physics have solved a mystery of quantum mechanics, and found that quantum tunneling is an instantaneous process May 27th, 2015

Nanotechnology identifies brain tumor types through MRI 'virtual biopsy' in animal studies: If results are confirmed in humans, tumor cells could someday be diagnosed by MRI imaging and treated with tumor-specific IV injections; new NIH grant will fund future study May 27th, 2015

Who needs water to assemble DNA? Non-aqueous solvent supports DNA nanotechnology May 27th, 2015

Controlled Release of Anticorrosive Materials in Spot by Nanocarriers May 27th, 2015

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

What makes cancer cells spread? New device offers clues May 19th, 2015

Researchers build new fermion microscope: Instrument freezes and images 1,000 individual fermionic atoms at once May 13th, 2015

International and U.S. Students and Teachers Headed to Toronto for 34th Annual International Space Development Conference®: Students competed in prestigious NSS-NASA Ames Space Settlement Design Contest May 9th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project