Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Oxford Nanopore Technologies announces participation in 12m READNA project

Abstract:
- Consortium to improve DNA analysis technologies launches under EU Seventh Framework Programme (FP7) -

Oxford Nanopore Technologies announces participation in 12m READNA project

Oxford, UK | Posted on December 3rd, 2008

Oxford Nanopore Technologies ("Oxford Nanopore") today announced its participation in the Revolutionary Approaches and Devices for Nucleic Acid analysis project (READNA). The newly-launched READNA consortium includes researchers from 16 academic and industrial institutions and will receive 12m in funding over four years, under the European Union's Seventh Framework Programme (FP7).

As part of the consortium, Oxford Nanopore will receive 730,000 in grant funding to support the development of its nanopore technology into an early exonuclease/nanopore DNA sequencing system. The Company will also work on projects to integrate protein nanopores and solid-state materials for the further progression of nanopore sequencing, the development of a new technique that uses nanopores for genome-wide methylation studies and the development of droplet-based bilayer arrays for rapid, multiplexed genotyping.

Oxford Nanopore will collaborate closely with researchers from the University of Oxford, including Professor Hagan Bayley's Chemical Biology group, the Biological Physics group and the Wellcome Trust Centre for Human Genetics. The University will receive 2m to support READNA projects.

"We are proud to be part of the READNA project, which includes representatives from Europe's leading research institutions and developers of genomic technologies," said Dr Gordon Sanghera, CEO of Oxford Nanopore. "The consortium aims to revolutionise nucleic acid analysis. Our role as the developer of a new generation of sequencing technology, based on nanopores, is critical to the project. With support also being given to our academic collaborators, we believe we are in the best position to deliver a meaningful improvement in sequencing technology with our label-free, single-molecule nanopore system."

The READNA consortium aims to revolutionise the analysis of nucleic acids by the improvement of existing methods and the development of new technologies.

Specific goals of the project include:

* Development of a new generation of rapid and cost effective sequencing methodologies
* Single molecule detection of DNA molecules in nanosystems using nanopores and nanochannels
* Improvement of elements of existing sequencing systems
* Methods for the detection and the enrichment of rare mutations from peripheral patient samples
* Combining RNA and DNA analysis in a single analytical device
* Development of methods for genome-wide analysis of DNA methylation at a high resolution
* Development of cost-effective high resolution HLA typing
* Development of assays for effective high-resolution genotyping of copy number variations

Overall, the project aims to progress towards a target of sequencing a complete human genome for 1000; the promotion of new sequencing technologies is central to this goal.

####

About Oxford Nanopore Technologies
Oxford Nanopore is developing nanopore technology, a revolutionary method of molecular detection and analysis with potential for DNA sequencing, diagnostics, drug development and defence applications.

For more information, please click here

Contacts:
Oxford Nanopore Technologies
Dr Gordon Sanghera
+44 (0) 870 486 1966
CEO
or
Zoe McDougall
+44 (0) 870 486 1966
Communications

Copyright © Business Wire 2008

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A nano-roundabout for light December 10th, 2016

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

Nanomedicine

Arrowhead Pharmaceuticals to Webcast Fiscal 2016 Year End Results December 7th, 2016

Fast, efficient sperm tails inspire nanobiotechnology December 5th, 2016

Journal Nanotechnology Progress International (JONPI) Volume 6, issue 2 coming out soon! December 5th, 2016

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Announcements

A nano-roundabout for light December 10th, 2016

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project