Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Special feature: SMEs make Europe’s innovation clock tick

Abstract:
SMEs can have a huge impact on the world standing of European research. Just look at the work of IMS Nanofabrication, a brilliant star in the semiconductor constellation. And Europe's research funding programme has helped this tiny company shine all the more brightly.

Special feature: SMEs make Europe’s innovation clock tick

Europe | Posted on November 27th, 2008

The semiconductor industry is the clock that beats the rhythms of the Information Age. Its revolutions are marked in 18-month cycles and its ticks herald every greater advances in IT.

We know that it works to an 18-month cycle - thanks to Gordon Moore, co-founder of Intel and his Moore's Law. Simply put, Moore's Law says that the number of transistors on a microchip will double every 18 months for the same cost. As the silicon clock makes its 18-month revolutions, the technology's power increases as its size and cost diminishes.

There are theoretical limits, like the possible size of printed circuits using various light frequencies, atomic force telescopes and electron beams. All technologies eventually reach a point where physical laws - like the speed of light or the frequency of an electromagnetic wave - stop one particular line of innovation. But within the boundary of physics, researchers always find ways to work around the problem.

And in Europe, SMEs are often in the thick of it.

European SMEs are a vital part of the innovation economy. They are smaller and far more numerous than their American counterparts, according to the Hitech Federation, an association for technology SMEs in Europe. The average staff level of a European SME is just six, against 19 in the USA. But European SMEs account for a staggering 34% of employment across the continent, while in the States the sector accounts for just 11% of total employment.

The importance of SMEs is further underlined by the dearth of large European companies. The USA has over 3176 companies with a turnover greater than €100m, for a population of 291m, while the EU has a population of 310m with just 2006 companies of the same size.

That SMEs play a huge part in European technology is well known. What is less well understood is how big an impact they can have on the technology landscape.

But one company, IMS Nanofabrication AG in Vienna, Austria, is a simple example of just how big a role SMEs can play on the world stage. The company designed a solution which could dramatically shave chip-making production time and cost, called Projection Mask-Less Lithography (PML2).

Masks in lithography are incredibly expensive, costing several hundred thousand, and one leading chip needs several of such critical masks to complete the circuit. They also take time to produce. The costs are so high that it is affecting semiconductor innovation.

Industry needs a cost effective and fast system now, according to Dr Hans Loeschner, co-founder and Chief Technical Officer at IMS Nanofabrication. A system that can produce chips for low-volume applications - for developing new devices and rapid prototyping.
Theoretical concept to practical prototype

IMS Nanofabrication's solution does not use a single Electron Beam Direct Write device, usually used for making masks and writing on wafers with very low throughput. Instead, they split the electron beam into thousands of smaller, micrometer-sized beams via an aperture plate. Those beams then pass through a blanking plate, which deflects some of the smaller beams. The un-deflected beams imprint the desired pattern on the silicon wafer.

The idea has been around for some time. "IMS - Ion Microfabrication Systems - proposed a similar solution in the 1980s," explains Dr Loeschner. But it was not possible to fabricate the blanking device at that time.

"There was a further problem to realise a demagnification of 200:1 to turn micrometer-sized beams into beams of less than 20nm in sharpness," says Dr Loeschner. Now IMS Nanofabrication can provide the required degree of sharpness.

It was an exciting and promising idea, but going from a theoretical concept to a practical prototype was a big leap.

And here is another even more important lesson that IMS Nanofabrication can teach us: The importance of research support to European SMEs. The company had a great idea, but needed help turning it into a proof-of-concept system.

Enter the Europe's IST research funding programme (FP6), which provided a grant that allowed IMS and its partners to create the RIMANA project.

IMS Nanofabrication and the RIMANA project was able to build, test and experiment on a new device for semiconductor lithography that could unlock a major bottleneck in microchip design.
Huge impact

It has had a huge impact, with RIMANA invited all over the world to talk about its work. The project immediately seized the interest of global players on the semiconductor stage, and it is in advanced negotiations with a strategic partner to commercialise its prototype PML2 device.

It has only begun to explore the potential of the new technology, which could have a long life. So much so that PML2 is now part of a larger research consortium - called MAGIC - to further refine the concept.

So how did an SME in Austria become a player in the global semiconductor stage?
The ticks on Europe's semiconductor clock

"There were a variety of factors that played an important role," Dr Loeschner tells ICT Results. "Excellent personnel and management were key elements. Gerhard Gross, our CEO, was SEMATECH Director of Lithography and headed a company that produces electron beam systems.

"He stimulated mask-less lithography development and that helped to get our idea PML2 known. Elmar Platzgummer, our COO, is a young, most innovative physicist. Together with him the ‘radical innovation' [in] PML2 was developed. But you have to choose the right forum," Dr Loeschner warns.

He says creating a good abstract was essential to get the opportunity to present the idea, and once a company does get to present their idea, it is vital to make a really compelling presentation, that spells out the benefits clearly. "Christof Klein, our PML2 Project Manager, was able to fulfil this task," Dr Loeschner notes.

"We were very lucky as well in that we had an excellent project officer, who really understood the technology and was able to offer great feedback and a critical appraisal of the work we were doing, what was working and what was not. [Our] European Commission project officer was really an excellent resource and he helped the project immensely."

Dr Loeschner added that it was critical to have an inventive spirit, to overcome problems that might occur during the research and development of a new idea. Good connections and contacts within the industry were important, too.

It is a tall order for an SME, but the rewards are worth the effort. IMS Nanofabrication has developed a bottleneck-breaking technology that could change the rules of the game in the semiconductor world.

All of which points to perhaps the most important lesson. In Europe, SMEs really are the ticks on the semiconductor clock.
This the second and final of a two-part special feature on the RIMANA project appearing on ICT Results.

####

For more information, please click here

Copyright © ITC Results

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Chip Technology

New chip opens door to AI computing at light speed February 16th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project