Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Halas wins high-profile national security award: Rice optics pioneer wins lucrative grant for nanophotonics research

Abstract:
Rice University nanophotonics pioneer Naomi Halas has been named a National Security Science and Engineering Faculty Fellow (NSSEFF) by the Department of Defense. Halas is one of just six fellows chosen from more than 650 nominees this year for the prestigious program.

Halas wins high-profile national security award: Rice optics pioneer wins lucrative grant for nanophotonics research

Houston, TX | Posted on November 25th, 2008

The NSSEFF program provides grants of approximately $3 million in direct costs over five years to top-tier researchers from U.S. universities to conduct long-term, unclassified, basic research involving the most challenging technical issues facing the Department of Defense.

"This is an incredibly competitive program, and no one is more deserving of the honor and recognition than Dr. Halas," said Sallie Keller-McNulty, dean of engineering at Rice. "This grant will help her continue to expand upon her ground-breaking research on the optical properties of engineered nanostructures and enable her research to positively impact the safety and security of our country."

Halas is a world-renowned leader in the field of nano-optics and the inventor of metallic nanoshells, a class of nanoparticles that is being explored for dozens of potential applications, including a revolutionary new cancer treatment the entered human trials this year.

A past winner of the National Science Foundation's Young Investigator Award and a four-time winner of the Rice Engineering Alumni's Hershel M. Rich Invention Award, Halas is the Stanley C. Moore Professor of Electrical and Computer Engineering and director of Rice's Laboratory for Nanophotonics (LANP). Among her many honors, she received the Cancer Innovator Award from the congressionally directed medical research programs of the Department of Defense in 2003 and was named to Esquire magazine's "Best & Brightest" list in 2006.

Halas' winning proposal, "3D Nanophotonics: Bending Light in New Directions," encompasses a major, comprehensive research program designed to broaden and redefine the capabilities of engineered electromagnetic nanomaterials that interact with both infrared and visible light. Breakthroughs in the field could form the basis for everything from super-efficient solar power collectors to next-generation camouflage.

"The long-term impact of this research will profoundly change the way we design, make, use and think about optical materials," Halas said. "It's perfect timing that the Department of Defense has recognized the strategic importance of this line of research, and I look forward to the opportunity of pursuing these research goals."

####

About Rice University
Rice University is consistently ranked one of America’s best teaching and research universities. It is distinguished by its: size—2,850 undergraduates and 1,950 graduate students; selectivity—10 applicants for each place in the freshman class; resources—an undergraduate student-to-faculty ratio of 6-to-1, and the fifth largest endowment per student among American universities; residential college system, which builds communities that are both close-knit and diverse; and collaborative culture, which crosses disciplines, integrates teaching and research, and intermingles undergraduate and graduate work. Rice’s wooded campus is located in the nation’s fourth largest city and on America’s South Coast.

For more information, please click here

Contacts:
Jade Boyd

713-348-6778

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Heating quantum matter: A novel view on topology: Physicists demonstrate how heating up a quantum system can be used as a universal probe for exotic states of matter August 22nd, 2017

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Govt.-Legislation/Regulation/Funding/Policy

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Announcements

Heating quantum matter: A novel view on topology: Physicists demonstrate how heating up a quantum system can be used as a universal probe for exotic states of matter August 22nd, 2017

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Military

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Sensing technology takes a quantum leap with RIT photonics research: Office of Naval Research funds levitated optomechanics project August 10th, 2017

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Landscapes give latitude to 2-D material designers: Rice University, Oak Ridge scientists show growing atom-thin sheets on cones allows control of defects August 9th, 2017

Photonics/Optics/Lasers

Researchers printed graphene-like materials with inkjet August 17th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Sensing technology takes a quantum leap with RIT photonics research: Office of Naval Research funds levitated optomechanics project August 10th, 2017

High resolution without particle accelerator: A first for physics -- University of Jena physicists are first to achieve optical coherence tomography with XUV radiation at laboratory scale August 7th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project