Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Baby steps: Engineers show how tiny cell proteins generate force to 'walk'

Image courtesy / Ahmad S. Khalil; Kathleen M. Flynn; and Wonmuk Hwang
Kinesin, a small motor protein found in cells, walks stepwise on microtubules to perform cellular processes. In each step, a power stroke is generated when two mechanical elements (neck linker, in red, and cover strand, in blue) form a beta-sheet that folds to drive the protein forward.
Image courtesy / Ahmad S. Khalil; Kathleen M. Flynn; and Wonmuk Hwang
Kinesin, a small motor protein found in cells, walks stepwise on microtubules to perform cellular processes. In each step, a power stroke is generated when two mechanical elements (neck linker, in red, and cover strand, in blue) form a beta-sheet that folds to drive the protein forward.

Abstract:
MIT researchers have shown how a cell motor protein exerts the force to move, enabling functions such as cell division.

Kinesin, a motor protein that also carries neurotransmitters, "walks" along cellular beams known as microtubules. For the first time, the MIT team has shown at a molecular level how kinesin generates the force needed to step along the microtubules.

Baby steps: Engineers show how tiny cell proteins generate force to 'walk'

Cambridge, MA | Posted on November 24th, 2008

The researchers, led by Matthew Lang, associate professor of biological and mechanical engineering, report their findings in the Nov. 24 online early issue of the Proceedings of the National Academy of Sciences.

Because kinesin is involved in organizing the machinery of cell division, understanding how it works could one day be useful in developing therapies for diseases involving out-of-control cell division, such as cancer.

The protein consists of two "heads," which walk along the microtubule, and a long "tail," which carries cargo. The heads take turns stepping along the microtubule, at a rate of up to 100 steps (800 nanometers) per second.

In the PNAS paper, Lang and his colleagues offer experimental evidence for a model they reported in January in the journal Structure. Their model suggests -- and the new experiments confirm -- that a small region of the protein, part of which joins the head and tail is responsible for generating the force needed to make kinesin walk. Two protein subunits, known as the N-terminal cover strand and neck linker, line up next to each other to form a sheet, forming the cover-neck bundle that drives the kinesin head forward.

"This is the kinesin power stroke," said Lang.

Next, Lang's team plans to investigate how the two kinesin heads communicate with each other to coordinate their steps.

Lead author of the PNAS paper is Ahmad Khalil, graduate student in mechanical engineering. Other MIT authors of the paper are David Appleyard, a graduate student in biological engineering; Anna Labno, a recent MIT graduate; Adrien Georges, a visiting student in Lang's lab; and Angela Belcher, the Germehausen Professor of Materials Science and Engineering and Biological Engineering. This work is a close collaboration with authors Martin Karplus of Harvard and Wonmuk Hwang of Texas A&M.

The research was funded by the National Institutes of Health and the Army Research Office Institute of Collaborative Biotechnologies.

####

About MIT
The mission of MIT is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the 21st century.

For more information, please click here

Contacts:
Teresa Herbert
MIT News Office
Phone: 617-258-5403

Copyright © MIT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Hot electrons point the way to perfect light absorption: Physicists study how to achieve perfect absorption of light with the help of rough ultrathin films September 1st, 2015

Using DNA origami to build nanodevices of the future September 1st, 2015

Nanotech could rid cattle of ticks, with less collateral damage September 1st, 2015

Scientists 'squeeze' light one particle at a time: A team of scientists have measured a bizarre effect in quantum physics, in which individual particles of light are said to have been 'squeezed' -- an achievement which at least one textbook had written off as hopeless September 1st, 2015

Govt.-Legislation/Regulation/Funding/Policy

An engineered surface unsticks sticky water droplets August 31st, 2015

New material science research may advance tech tools August 31st, 2015

Artificial leaf harnesses sunlight for efficient fuel production August 30th, 2015

Researchers use DNA 'clews' to shuttle CRISPR-Cas9 gene-editing tool into cells August 30th, 2015

Nanomedicine

Using DNA origami to build nanodevices of the future September 1st, 2015

Efficiency of Nanodrug Containing Antibiotics in Treatment of Infectious Diseases Evaluated August 31st, 2015

Researchers use DNA 'clews' to shuttle CRISPR-Cas9 gene-editing tool into cells August 30th, 2015

Iranian Scientists Use Artemisia Annua Plant to Produce Breast Cancer Drugs August 29th, 2015

Discoveries

Hot electrons point the way to perfect light absorption: Physicists study how to achieve perfect absorption of light with the help of rough ultrathin films September 1st, 2015

Using DNA origami to build nanodevices of the future September 1st, 2015

Scientists 'squeeze' light one particle at a time: A team of scientists have measured a bizarre effect in quantum physics, in which individual particles of light are said to have been 'squeezed' -- an achievement which at least one textbook had written off as hopeless September 1st, 2015

New material science research may advance tech tools August 31st, 2015

Announcements

Hot electrons point the way to perfect light absorption: Physicists study how to achieve perfect absorption of light with the help of rough ultrathin films September 1st, 2015

Using DNA origami to build nanodevices of the future September 1st, 2015

Nanotech could rid cattle of ticks, with less collateral damage September 1st, 2015

Scientists 'squeeze' light one particle at a time: A team of scientists have measured a bizarre effect in quantum physics, in which individual particles of light are said to have been 'squeezed' -- an achievement which at least one textbook had written off as hopeless September 1st, 2015

Military

Seeing quantum motion August 30th, 2015

These microscopic fish are 3-D-printed to do more than swim: Researchers demonstrate a novel method to build microscopic robots with complex shapes and functionalities August 26th, 2015

Nanotechnology that will impact the Security & Defense sectors to be discussed at NanoSD2015 conference August 25th, 2015

Industrial Nanotech, Inc. Provides Update On Hospital Project, PCAOB Audit, and New Heat Shield™ Line August 24th, 2015

Nanobiotechnology

Using DNA origami to build nanodevices of the future September 1st, 2015

Researchers use DNA 'clews' to shuttle CRISPR-Cas9 gene-editing tool into cells August 30th, 2015

Small but heading for the big time: Nanobiotix half year results for the six months ended 30 June 2015, in line with expectations: Major clinical achievements and corporate developments August 28th, 2015

Nanotechnology that will impact the Security & Defense sectors to be discussed at NanoSD2015 conference August 25th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic