Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Quantum computing spins closer

Physics graduate student David Press at the optical bench where his current experiments are running.
Physics graduate student David Press at the optical bench where his current experiments are running.

Abstract:
The promise of quantum computing is that it will dramatically outshine traditional computers in tackling certain key problems: searching large databases, factoring large numbers, creating uncrackable codes and simulating the atomic structure of materials.

Quantum computing spins closer

PALO ALTO, CA | Posted on November 22nd, 2008

A quantum step in that direction, if you'll pardon the pun, has been taken by Stanford researchers who announced their success in a paper published in the journal Nature. Working in the Ginzton Laboratory, they've employed ultrafast lasers to set a new speed record for the time it takes to rotate the spin of an individual electron and confirm the spin's new position.

Why does that matter? Existing computers, from laptops to supercomputers, see data as bits of information. Each bit can be either a zero or a one. But a quantum bit can be both zero and one at the same time, a situation known as a superposition state. This allows quantum computers to act like a massively parallel computer in some circumstances, solving problems that are almost impossible for classic computers to handle.

Quantum computing can be accomplished using a property of electrons known as "spin." A single unit of quantum information is the qubit, and can be constructed from a single electron spin, which in this experiment was confined within a nano-sized semiconductor known as a quantum dot.

An electron spin may be described as up or down (a variation of the usual zero and one) and may be manipulated from one state to another. The faster these electrons can be switched, the more quickly numbers can be crunched in a quantum fashion, with its intrinsic advantages over traditional computing designs.

The qubit in the Stanford experiment was manipulated and measured about 100 times faster than with previous techniques, said one of the researchers, David Press, a graduate student in applied physics.

The experiments were conducted at a temperature of almost absolute zero, inside a strong magnetic field produced by a superconducting magnet. The researchers first hit the qubit with laser light of specific frequencies to define and measure the electron spin, all within a few nanoseconds. Then they rotated the spin with polarized light pulses in a few tens of picoseconds (a picosecond is one trillionth of a second). Finally, the spin state was read out with yet another optical pulse.

Similar experiments have been done before, but with radio-frequency pulses, which are slower than laser-light pulses. "The optics were quite tricky," Press said. The researchers had to find a single, specific photon emitted from the qubit in order confirm the spin state of the electron. That photon, however, was clouded in a sea of scattered photons from the lasers themselves.

"The big benefit is to make quantum computing faster," Press said. The experiment "pushed quantum dots up to speed with other qubit candidate systems to ultimately build a quantum computer."

Quantum computers are still years away. In the shorter term, Press said, researchers would like to build a system of tens or hundreds of qubits to simulate the operation of a larger quantum system.

The other authors of the Nature paper were Bingyang Zhang of the Ginzton Lab, and Thaddeus Ladd and Yoshihisa Yamamoto of the Ginzton Lab and the National Institute of Informatics in Tokyo.

####

For more information, please click here

Contacts:

Stanford News Service
425 Santa Teresa St.
Stanford, CA 94305-2245

(650) 723-2558 (main number)
(650) 725-0247 (fax)

Copyright © Stanford University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Spintronics

Swapping substrates improves edges of graphene nanoribbons: Using inert boron nitride instead of silica creates precise zigzag edges in monolayer graphene August 2nd, 2016

Quantum drag:University of Iowa physicist says current in one iron magnetic sheet can create quantized spin waves in another, separate sheet July 22nd, 2016

A mini-antenna for the data processing of tomorrow: Nature Nanotechnology: Short-wavelength spin waves generated directly for the first time July 20th, 2016

A new spin on reality July 15th, 2016

Quantum Computing

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

Prototype chip could help make quantum computing practical: Built-in optics could enable chips that use trapped ions as quantum bits August 9th, 2016

Diamond-based light sources will lay a foundation for quantum communications of the future: Electrified quantum diamond can become the heart of quantum networks and computers of the future August 7th, 2016

Record-breaking logic gate 'another important milestone' on road to quantum computers August 7th, 2016

Discoveries

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Nanofur for oil spill cleanup: Materials researchers learn from aquatic ferns: Hairy plant leaves are highly oil-absorbing / publication in bioinspiration & biomimetics / video on absorption capacity August 25th, 2016

Unraveling the crystal structure of a -70 Celsius superconductor, a world first: Significant advancement in the realization of room-temperature superconductors August 25th, 2016

Announcements

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic