Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanoparticle Reports on Drug Delivery to Breast Tumors, Predicts Response to Therapy

Abstract:
One of the hallmarks of many nanoparticle-based anticancer therapeutics and imaging agents is that they accumulate in tumors thanks to the fact that they are small enough to escape from the bloodstream through the leaky blood vessels that surround tumors. And although many if not most tumors are surrounded by leaky blood vessels, the extent of that leakiness varies widely among tumors. As a result, the effectiveness of a given nanoparticle-based therapeutic also might vary from patient to patient in a way that is now impossible to predict.

Nanoparticle Reports on Drug Delivery to Breast Tumors, Predicts Response to Therapy

Bethesda, MD | Posted on November 20th, 2008

A research team headed by Ravi Bellamkonda, Ph.D., the Georgia Institute of Technology, appears to have hit on a solution to the problem of determining how much of a nanoparticle drug is actually making it into breast tumors. The team's approach, which is described in a paper in the journal Biomaterials, involves adding an approved x-ray contrast agent to a drug-loaded nanoparticle and then using standard mammography to quantify how much of the nanoparticle accumulates in a particular breast tumor. These results hold promise for personalizing breast cancer therapy.

To create their nanoparticle, the investigators first prepared a highly concentrated solution of the x-ray contrast agent iodixanol and then added two different lipids, one of which was linked to PEG. The resulting lipd-based nanoparticles then were mixed with the anticancer agent doxorubicin for 1 day, yielding a nanoparticle loaded with both anticancer agent and contrast agent.

The investigators then administered this nanoparticle to rats with human breast tumors using a dose that was small enough so that only nanoparticles that accumulated in tumors would be visible using mammography within 24 hours. Any nanoparticles circulating in the bloodstream would be too dilute to be seen on a mammogram. When the researchers monitored the nanoparticles for 3 days after injection, they observed that there was wide variability in the amount of nanoparticle that they could observe in different tumors. Some tumors rapidly accumulated signficant levels of the nanoparticle, whereas other tumors showed a slow and low uptake. More importantly, the investigators noted that those animals that showed rapid uptake of the nanoparticles, as visualized using mammography 3 days after dosing, survived significantly longer than did those animals with a slower uptake.

####

About National Cancer Institute
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580

Copyright © National Cancer Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View abstract - “Multifunctional nanocarriers for mammographic quantification of tumor dosing and prognosis of breast cancer therapy.”

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Nanomedicine

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project