Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > European project breaks efficiency record by converting sunlight in electricity

Abstract:
Scientists of the Commission-financed project FULLSPECTRUM have developed photovoltaic (PV) multi-junction (MJ) solar cells which are able to convert 39,7 % of the energy of sun light into electricity. This is the highest percentage ever reached in Europe, according to researchers after their final workshop today in El Escorial, Spain.

European project breaks efficiency record by converting sunlight in electricity

El Escorial, Spain | Posted on November 20th, 2008

The main barrier to large-scale deployment of PV systems is the high production cost of electricity, due to the significant capital investment costs. Research is engaged to reduce manufacturing costs and to raise the efficiency of the cells. Today conventional PV cells made of silicon are converting only a fraction of the solar light spectrum around 17%.

FULLSPECTRUM's multi-junction solar cells are able to catch more sun light energy due to their composition of different materials, including gallium, phosphorus, indium and germanium. These multi-junction solar cells are expensive and have only been used for applications in space. However, the cost can be considerably reduced by arranging them in special panels witch include lenses that focus a large amount of solar energy onto the cells. These concentrators can reach far above 1000 times the natural solar power flux and have also been the object of the project research.

FULLSPECTRUM is an integrated project involving 19 European public and industrial research centres from seven EU Member States, as well as Russia and Switzerland. It is coordinated by the Universidad Politécnica de Madrid, Instituto de Energía Solar and started in November 2003 with an overall budget of € 14,7 Million of with the European Commission financed € 8.4 Million.

Background

The European Commission has spent more than € 105 Million in research on photovoltaic energy since the start of Framework Programme 6 in 2002. Many of the projects are trying to get production costs of silicon solar cells down.

Energy research is constituent of the European Union Energy and Climate Package. One of its ambitious targets for 2020 is to increase by up to 20% the level of renewable energy in the EU's overall final energy consumption. To reach this goal the European Commission started the Strategic Energy Technology (SET)-Plan.

The Solar Europe Industrial Initiative as part of the SET-Plan has recently elevated its target for the participation of photovoltaics in the European electricity demand by 2020 from 3% to 12%. This can be translated into installing from 350 up to 400 GW P (Gigawatt of peak capacity) in photovoltaics, corresponding to an average growth of ~40% per year from today's situation.

Back in 2006, the total installed capacity of PV systems in the EU was 3,4 GW P , representing approximately 0,5% of the total EU electrical capacity. The electricity generated by PV was approximately 2,5 TWh (Terawatthour), or 0,1% of the demand. The annual installations of PV systems in 2006 in the EU reached 1250 Megawatt.

####

For more information, please click here

Copyright © FULLSPECTRUM

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Meteorite impact on a nano scale August 29th, 2016

Designing ultrasound tools with Lego-like proteins August 29th, 2016

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

Energy

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Lehigh engineer discovers a high-speed nano-avalanche: New findings published in the Journal of Electrochemical Society about the process involving transformations in glass that occur under intense electrical and thermal conditions could lead the way to more energy-efficient glas August 24th, 2016

New flexible material can make any window 'smart' August 23rd, 2016

Researchers reduce expensive noble metals for fuel cell reactions August 22nd, 2016

Alliances/Trade associations/Partnerships/Distributorships

Thomas Swan and NGI announce unique partnership July 28th, 2016

Starpharma initiates new DEP™ drug delivery program with AstraZeneca July 27th, 2016

XEI Scientific Partners with Electron Microscopy Sciences to Promote and Sell its Products in North and South America July 25th, 2016

Leti and Korea Institute of Science and Technology to Explore Collaboration on Advanced Technologies for Digital Era July 14th, 2016

Solar/Photovoltaic

Let's roll: Material for polymer solar cells may lend itself to large-area processing: 'Sweet spot' for mass-producing polymer solar cells may be far larger than dictated by the conventional wisdom August 12th, 2016

NREL technique leads to improved perovskite solar cells August 11th, 2016

Making a solar energy conversion breakthrough with help from a ferroelectrics pioneer: Philadelphia-based team shows how a ferroelectric insulator can surpass shockley-queisser limit August 9th, 2016

Tiny high-performance solar cells turn power generation sideways August 5th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic