Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Intermolecular and AMD Develop Self-Assembly Technology for Next-Generation Logic Devices

Abstract:
Intermolecular, Inc. today announced that they have collaborated with AMD to develop advanced interconnect technology for next-generation, high-performance logic devices based on the process of molecular self-assembly.

Intermolecular and AMD Develop Self-Assembly Technology for Next-Generation Logic Devices

San Jose, CA | Posted on November 19th, 2008

Shrinking semiconductor device geometries and the reduction of copper interconnect feature sizes have increased certain types of reliability failures. For nearly a decade, the industry has tried to develop a breakthrough remedy by applying a copper-capping layer to improve electromigration reliability performance.

Working on a Collaborative Development Program (CDP) for the past year, Intermolecular and AMD have developed an innovative solution that enables the implementation of a copper-capping layer in manufacturing advanced logic devices with copper interconnects and low-k dielectrics. The CDP was custom-designed to apply Intermolecular's High-Productivity Combinatorial™ (HPC) technology products and services to AMD's specific device architecture.

"Through a methodical, hierarchical, HPC screening approach, we have been able to not only identify a unique formulation, but more important, a simple, aqueous, room temperature, manufacturing-friendly process and associated integration scheme to facilitate and expand the manufacturability of metal capping at finer geometries, and with more challenging dielectrics," said Tony Chiang, CTO of Intermolecular.

The resulting material and processing technology, called the Molecular Masking LayerTM (MML), leverages molecular self-assembly to selectively alter the surface state of the dielectric regions of the incoming wafer to manage and facilitate integration of the metal capping process flow.

Dr. Chiang noted that Intermolecular's MML technology is an example of how the company's HPC™ systems and methods can help customers significantly improve R&D ROI by accelerating materials discovery, process development, and integration learning at reduced costs (including time, wafers and associated resources).

The MML has met AMD's criteria for general use in its high-volume manufacturing facility in Dresden, Germany, and is being evaluated by AMD for insertion into specific process flows.

"Working with Intermolecular, we have made significant progress in overcoming the performance challenges of interconnects at successively tighter design nodes," said Craig Sander, AMD's corporate Vice President for Technology Development.

Intermolecular is the semiconductor industry's only provider of fully integrated combinatorial R&D technology, powered by systems and methodologies that radically accelerate discovery and integration of new materials, new process technologies and new device structures. The company's Tempus™ HPC platform enables customers to maximize their R&D return on investment through economical high-speed development, integration and electrical testing of a large number of alternative solution sets.

####

About Intermolecular, Inc.
Intermolecular, Inc. delivers High Productivity Combinatorial™ (HPC) technology products and services that enable customers to maximize semiconductor R&D ROI. The company’s Tempus™ HPC™ Platform offers chipmakers, materials suppliers and equipment manufacturers integrated processing, characterization and informatics systems that exponentially accelerate learning in materials discovery, process development and IC device integration.

Customers apply Intermolecular’s technologies in their R&D projects through Collaborative Development Programs (CDPs) with Intermolecular’s multidisciplinary team, or through purchase of Tempus systems, or by licensing of IP developed and qualified by Intermolecular. By leveraging HPC technologies to quickly develop, integrate and electrically test multiple alternative solutions, at minimum cost and risk, customers obtain unique IP and time-to-market advantage.

Founded in 2004, Intermolecular is based in San Jose, California.

For more information, please click here

Contacts:
Loomis Group
Jennifer Anselmo
415-882-9494, ext. 330

Copyright © Business Wire 2008

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Self Assembly

Liquid crystal templated chiral nanomaterials October 14th, 2022

Nanoclusters self-organize into centimeter-scale hierarchical assemblies April 22nd, 2022

Atom by atom: building precise smaller nanoparticles with templates March 4th, 2022

Nanostructures get complex with electron equivalents: Nanoparticles of two different sizes break away from symmetrical designs January 14th, 2022

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Alliances/Trade associations/Partnerships/Distributorships

Manchester graphene spin-out signs $1billion game-changing deal to help tackle global sustainability challenges: Landmark deal for the commercialisation of graphene April 14th, 2023

Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022

Research partnerships

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project