Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Intermolecular and AMD Develop Self-Assembly Technology for Next-Generation Logic Devices

Abstract:
Intermolecular, Inc. today announced that they have collaborated with AMD to develop advanced interconnect technology for next-generation, high-performance logic devices based on the process of molecular self-assembly.

Intermolecular and AMD Develop Self-Assembly Technology for Next-Generation Logic Devices

San Jose, CA | Posted on November 19th, 2008

Shrinking semiconductor device geometries and the reduction of copper interconnect feature sizes have increased certain types of reliability failures. For nearly a decade, the industry has tried to develop a breakthrough remedy by applying a copper-capping layer to improve electromigration reliability performance.

Working on a Collaborative Development Program (CDP) for the past year, Intermolecular and AMD have developed an innovative solution that enables the implementation of a copper-capping layer in manufacturing advanced logic devices with copper interconnects and low-k dielectrics. The CDP was custom-designed to apply Intermolecular's High-Productivity Combinatorial™ (HPC) technology products and services to AMD's specific device architecture.

"Through a methodical, hierarchical, HPC screening approach, we have been able to not only identify a unique formulation, but more important, a simple, aqueous, room temperature, manufacturing-friendly process and associated integration scheme to facilitate and expand the manufacturability of metal capping at finer geometries, and with more challenging dielectrics," said Tony Chiang, CTO of Intermolecular.

The resulting material and processing technology, called the Molecular Masking LayerTM (MML), leverages molecular self-assembly to selectively alter the surface state of the dielectric regions of the incoming wafer to manage and facilitate integration of the metal capping process flow.

Dr. Chiang noted that Intermolecular's MML technology is an example of how the company's HPC™ systems and methods can help customers significantly improve R&D ROI by accelerating materials discovery, process development, and integration learning at reduced costs (including time, wafers and associated resources).

The MML has met AMD's criteria for general use in its high-volume manufacturing facility in Dresden, Germany, and is being evaluated by AMD for insertion into specific process flows.

"Working with Intermolecular, we have made significant progress in overcoming the performance challenges of interconnects at successively tighter design nodes," said Craig Sander, AMD's corporate Vice President for Technology Development.

Intermolecular is the semiconductor industry's only provider of fully integrated combinatorial R&D technology, powered by systems and methodologies that radically accelerate discovery and integration of new materials, new process technologies and new device structures. The company's Tempus™ HPC platform enables customers to maximize their R&D return on investment through economical high-speed development, integration and electrical testing of a large number of alternative solution sets.

####

About Intermolecular, Inc.
Intermolecular, Inc. delivers High Productivity Combinatorial™ (HPC) technology products and services that enable customers to maximize semiconductor R&D ROI. The company’s Tempus™ HPC™ Platform offers chipmakers, materials suppliers and equipment manufacturers integrated processing, characterization and informatics systems that exponentially accelerate learning in materials discovery, process development and IC device integration.

Customers apply Intermolecular’s technologies in their R&D projects through Collaborative Development Programs (CDPs) with Intermolecular’s multidisciplinary team, or through purchase of Tempus systems, or by licensing of IP developed and qualified by Intermolecular. By leveraging HPC technologies to quickly develop, integrate and electrically test multiple alternative solutions, at minimum cost and risk, customers obtain unique IP and time-to-market advantage.

Founded in 2004, Intermolecular is based in San Jose, California.

For more information, please click here

Contacts:
Loomis Group
Jennifer Anselmo
415-882-9494, ext. 330

Copyright © Business Wire 2008

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Fewer defects from a 2-D approach August 15th, 2017

Scientists from the University of Manchester and Diamond Light Source work with Deben to develop and test a new compression stage to study irradiated graphite at elevated temperatures August 15th, 2017

Self Assembly

Physicists gain new insights into nanosystems with spherical confinement: Enormous potential for the targeted delivery of pharmaceutical agents and the creation of tailored nanoparticles July 27th, 2017

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

Nanotubes that build themselves April 14th, 2017

Nanocages for gold particles: what is happening inside? March 16th, 2017

Announcements

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Fewer defects from a 2-D approach August 15th, 2017

Scientists from the University of Manchester and Diamond Light Source work with Deben to develop and test a new compression stage to study irradiated graphite at elevated temperatures August 15th, 2017

Alliances/Trade associations/Partnerships/Distributorships

Oxford Instruments Plasma Technology announces a new partner in Korea August 15th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Technology Companies Join Forces for TEM Imaging and Analysis August 3rd, 2017

GLOBALFOUNDRIES and VeriSilicon To Enable Single-Chip Solution for Next-Gen IoT Networks: Integrated solution leverages GF’s 22FDX® technology to decrease power, area, and cost for NB-IoT and LTE-M applications July 14th, 2017

Research partnerships

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Sensing technology takes a quantum leap with RIT photonics research: Office of Naval Research funds levitated optomechanics project August 10th, 2017

Announcing the successful industrial feasibility test of a turnkey quantum Hall system for graphene characterisation and primary resistance metrology August 2nd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project