Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Intermolecular and AMD Develop Self-Assembly Technology for Next-Generation Logic Devices

Abstract:
Intermolecular, Inc. today announced that they have collaborated with AMD to develop advanced interconnect technology for next-generation, high-performance logic devices based on the process of molecular self-assembly.

Intermolecular and AMD Develop Self-Assembly Technology for Next-Generation Logic Devices

San Jose, CA | Posted on November 19th, 2008

Shrinking semiconductor device geometries and the reduction of copper interconnect feature sizes have increased certain types of reliability failures. For nearly a decade, the industry has tried to develop a breakthrough remedy by applying a copper-capping layer to improve electromigration reliability performance.

Working on a Collaborative Development Program (CDP) for the past year, Intermolecular and AMD have developed an innovative solution that enables the implementation of a copper-capping layer in manufacturing advanced logic devices with copper interconnects and low-k dielectrics. The CDP was custom-designed to apply Intermolecular's High-Productivity Combinatorial™ (HPC) technology products and services to AMD's specific device architecture.

"Through a methodical, hierarchical, HPC screening approach, we have been able to not only identify a unique formulation, but more important, a simple, aqueous, room temperature, manufacturing-friendly process and associated integration scheme to facilitate and expand the manufacturability of metal capping at finer geometries, and with more challenging dielectrics," said Tony Chiang, CTO of Intermolecular.

The resulting material and processing technology, called the Molecular Masking LayerTM (MML), leverages molecular self-assembly to selectively alter the surface state of the dielectric regions of the incoming wafer to manage and facilitate integration of the metal capping process flow.

Dr. Chiang noted that Intermolecular's MML technology is an example of how the company's HPC™ systems and methods can help customers significantly improve R&D ROI by accelerating materials discovery, process development, and integration learning at reduced costs (including time, wafers and associated resources).

The MML has met AMD's criteria for general use in its high-volume manufacturing facility in Dresden, Germany, and is being evaluated by AMD for insertion into specific process flows.

"Working with Intermolecular, we have made significant progress in overcoming the performance challenges of interconnects at successively tighter design nodes," said Craig Sander, AMD's corporate Vice President for Technology Development.

Intermolecular is the semiconductor industry's only provider of fully integrated combinatorial R&D technology, powered by systems and methodologies that radically accelerate discovery and integration of new materials, new process technologies and new device structures. The company's Tempus™ HPC platform enables customers to maximize their R&D return on investment through economical high-speed development, integration and electrical testing of a large number of alternative solution sets.

####

About Intermolecular, Inc.
Intermolecular, Inc. delivers High Productivity Combinatorial™ (HPC) technology products and services that enable customers to maximize semiconductor R&D ROI. The company’s Tempus™ HPC™ Platform offers chipmakers, materials suppliers and equipment manufacturers integrated processing, characterization and informatics systems that exponentially accelerate learning in materials discovery, process development and IC device integration.

Customers apply Intermolecular’s technologies in their R&D projects through Collaborative Development Programs (CDPs) with Intermolecular’s multidisciplinary team, or through purchase of Tempus systems, or by licensing of IP developed and qualified by Intermolecular. By leveraging HPC technologies to quickly develop, integrate and electrically test multiple alternative solutions, at minimum cost and risk, customers obtain unique IP and time-to-market advantage.

Founded in 2004, Intermolecular is based in San Jose, California.

For more information, please click here

Contacts:
Loomis Group
Jennifer Anselmo
415-882-9494, ext. 330

Copyright © Business Wire 2008

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Aculon Hires New Business Development Director December 19th, 2014

Self Assembly

Revealed: How bacteria drill into our cells and kill them December 2nd, 2014

Live Images from the Nano-cosmos: Researchers watch layers of football molecules grow November 5th, 2014

Outsmarting Thermodynamics in Self-assembly of Nanostructures: Berkeley Lab reports method for symmetry-breaking in feedback-driven self-assembly of optical metamaterials November 4th, 2014

NYU Researchers Break Nano Barrier to Engineer the First Protein Microfiber October 23rd, 2014

Announcements

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Aculon Hires New Business Development Director December 19th, 2014

Alliances/Partnerships/Distributorships

SUNY Poly NanoCollege Faculty Member Selected as American Physical Society Fellow: SUNY Poly Associate Professor of Nanoscience Dr. Vincent LaBella Recognized for Significant Technological Innovations that Enable Interactive Learning December 17th, 2014

New 'electronic skin' for prosthetics, robotics detects pressure from different directions December 10th, 2014

SEMATECH Reports Significant Progress in EUV Resist Outgas Testing: Technologists from SEMATECH and JSR demonstrate outgas test results that further enable EUV lithography for high-volume manufacturing readiness December 3rd, 2014

Toward a low-cost 'artificial leaf' that produces clean hydrogen fuel December 3rd, 2014

Research partnerships

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Unraveling the light of fireflies December 17th, 2014

Scientists trace nanoparticles from plants to caterpillars: Rice University study examines how nanoparticles behave in food chain December 16th, 2014

FEI and Oregon Health & Science University Install a Complete Correlative Microscopy Workflow in Newly Built Collaborative Science Facility December 16th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE