Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > NASA Plans Test of 'Electronic Nose' on International Space Station

Abstract:
NASA astronauts on space shuttle Endeavour's STS-126 mission will install an instrument on the International Space Station that can "smell" dangerous chemicals in the air. Designed to help protect crew members' health and safety, the experimental "ENose" will monitor the space station's environment for harmful chemicals such as ammonia, mercury, methanol and formaldehyde.

NASA Plans Test of 'Electronic Nose' on International Space Station

PASADENA, CA | Posted on November 19th, 2008

The ENose fills the long-standing gap between onboard alarms and complex analytical instruments. Air-quality problems have occurred before on the International Space Station, space shuttle and Russian Space Station Mir. In most cases, the chemicals were identified only after the crew had been exposed to them, if at all. The ENose, which will run continuously and autonomously, is the first instrument on the station that will detect and quantify chemical leaks or spills as they happen.

"The ENose is a 'first-responder' that will alert crew members of possible contaminants in the air and also analyze and quantify targeted changes in the cabin environment," said Margaret A. Ryan, the principal investigator of the ENose project at NASA's Jet Propulsion Laboratory, or JPL, in Pasadena, Calif. JPL built and manages the device.

Station crew members will unpack the ENose on Dec. 9 to begin the instrument's six-month demonstration in the crew cabin. If the experiment is successful, the ENose might be used in future space missions as part of an automated system to monitor and control astronauts' in-space environments.

"This ENose is a very capable instrument that will increase crew awareness of the state of their air quality," said Carl Walz, an astronaut and director of NASA's Advanced Capabilities Division, part of the Exploration System Mission Directorate, which funds the ENose. "Having experienced an air-quality issue during my Expedition 4 mission on the space station, I wish I had the information that this ENose will provide future crews. This technology demonstration will provide important information for environmental control and life-support system designers for the future lunar outpost."

Specifically, the shoebox-sized ENose contains an array of 32 sensors that can identify and quantify several organic and inorganic chemicals, including organic solvents and marker chemicals that signal the start of electrical fires. The ENose sensors are polymer films that change their electrical conductivity in response to different chemicals. The pattern of the sensor array's response depends on the particular chemical types present in the air.

The instrument can analyze volatile aerosols and vapors, help monitor cleanup of chemical spills or leaks, and enable more intensive chemical analysis by collecting raw data and streaming it to a computer at JPL's ENose laboratory. The instrument has a wide range of chemical sensitivity, from fractional parts per million to 10,000 parts per million. For all of its capabilities, the ENose weighs less than nine pounds and requires only 20 watts of power.

The ENose is now in its third generation. The first ENose was tested during a six-day demonstration on the STS-95 shuttle mission in 1998. That prototype could detect 10 compounds, but could not analyze data immediately. The second-generation ENose could detect, identify and quantify 21 different chemicals. It was extensively ground-tested. The third-generation ENose includes data-analysis software to identify and quantify the release of chemicals within 40 minutes of detection. While it will look for 10 chemical types in this six-month experiment, the new ENose can be trained to detect many others.

For more information about the ENose and the Advanced Environmental Monitoring and Control Project, visit:

aemc.jpl.nasa.gov/instruments/enose.cfm

For more information about NASA's exploration program, visit:

www.nasa.gov/exploration

For more information about the International Space Station, visit:

www.nasa.gov/station

####

For more information, please click here

Copyright © PR Newswire Association LLC.

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Graphene key to growing 2-dimensional semiconductor with extraordinary properties August 30th, 2016

University of Akron researchers find thin layers of water can become ice-like at room temperature: Results could lead to an assortment of anti-friction solutions August 30th, 2016

Nanocatalysis for organic chemistry: This research article by Dr. Qien Xu et al. is published in Current Organic Chemistry, Volume 20, Issue 19, 2016 August 30th, 2016

Continuous roll-process technology for transferring and packaging flexible LSI August 29th, 2016

Sensors

Graphene key to growing 2-dimensional semiconductor with extraordinary properties August 30th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Down to the wire: ONR researchers and new bacteria August 18th, 2016

'Sniffer plasmons' could detect explosives: Scientists have proposed a graphene-based spaser that can detect even small amounts of various substances, including explosives August 16th, 2016

Announcements

Graphene key to growing 2-dimensional semiconductor with extraordinary properties August 30th, 2016

University of Akron researchers find thin layers of water can become ice-like at room temperature: Results could lead to an assortment of anti-friction solutions August 30th, 2016

Nanocatalysis for organic chemistry: This research article by Dr. Qien Xu et al. is published in Current Organic Chemistry, Volume 20, Issue 19, 2016 August 30th, 2016

Meteorite impact on a nano scale August 29th, 2016

Aerospace/Space

Meteorite impact on a nano scale August 29th, 2016

University of Puerto Rico and NASA back in the news XEI reports August 23rd, 2016

To Infinity and Beyond with Nanosatellites August 10th, 2016

Carbon nanotube 'stitches' make stronger, lighter composites: Method to reinforce these materials could help make airplane frames lighter, more damage-resistant August 4th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic