Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Conference report highlights new research into drug delivery to treat eye disease: Group explores alternatives to surgery and intravitreous injection

Abstract:
Researchers are investigating microneedles, nanoparticles and polymer carriers as potential new techniques to combat the leading cause of visual impairment and blindness in the United States, according to a report from the Third Annual ARVO/Pfizer Ophthalmics Research Institute Conference.

Conference report highlights new research into drug delivery to treat eye disease: Group explores alternatives to surgery and intravitreous injection

Rockville, MD | Posted on November 18th, 2008

The report (www.iovs.org/cgi/content/full/49/11/4712) includes summaries from seven sessions on techniques for ocular drug delivery to the posterior segment of the eye and includes the findings of and opinions of more than 30 top ophthalmic researchers, brought together by the ARVO Foundation for Eye Research. The article in the November issue of Investigative Opthalmology & Visual Science defines the current research and the future needs for ocular drug delivery.

Diseases of the posterior segment of the eye are responsible for the majority of visual impairment and blindness cases in the United States, according to George Williams, MD. Until recently, these diseases were primarily treated with surgery, but recent developments in drug therapies have either replaced or complemented surgery.

But the challenge lies in delivering the drugs. Topical delivery such as ointments and drops are fairly ineffective, and delivery via intravitreous injection (an injection into the fluid in the behind the lens in the eye) can be hard on the patient. According to the report, "Improved drug delivery technologies that provide optimal pharmacokinetics, dose intervals and less invasive routes of administration are needed."

During the two-day event, John Heckenlively, MD, joined Jayakrishna Ambarti, MD, in a session on animal models of posterior ocular diseases. Allan Hoffman, ScD, discussed the design of polymer carriers for intracellular delivery of biomolecular drugs, such as peptides, proteins and nucleic acid drugs. His group is focused on using a family of acid-sensitive polymers to help deliver one of the latest drugs, silencing RNA (siRNA).

Another group of presenters discussed the use of nanoparticles, microbeads and microneedles. Mansoor M. Amiji, PhD, said that nanoparticles can help overcome barriers to drug delivery from the organ level to the subcellular level. Another research laboratory was investigating the effectiveness of hollow and solid microneedles that penetrate only hundreds of micrometers into the cornea or sclera to deliver drugs.

A safer alternative to direct intravitreous injections might be transscleral delivery into the vitreous using subconjunctival injections, said Michael Robinson, MD, adding that researchers needed a clear understanding of the dynamic barriers for the technique to work in treating retinal diseases. Another researcher in this area, Dayle H. Geroski, PhD, suggested that the relatively high permeability of the sclera offers great potential for transscleral drug delivery, especially for administration to the posterior part of the eye.

Other research focused on photodynamic therapy, which uses a photosensitizer agent that localizes more or less selectively to the target tissue and is activated by light, triggering chemical reactions that injure the target tissue.

Drug Delivery to Posterior Intraocular Tissues:
Third Annual ARVO/Pfizer Ophthalmics Research
Institute Conference
May 4-5, 2007, Fort Lauderdale, Florida
Session I: Unmet Needs and New Drug Opportunities in Treating Disorders of the Posterior Segment
Session II: Animal Models of Posterior Ocular Diseases
Session III: New Drug Design and Delivery Systems: What Do Experts See Beyond the Horizon?
Session IV: Ocular Drug Delivery Using Nanoparticles, Microbeads and Microneedles
Session V: Transscleral, Intravitreous and Suprachoroidal Drug Delivery
Session VI: Ocular Tissue Dissection, Modeling, and Ocular Tissue Assays
Session VII: Iontophoresis, Electroporation, Electrophoresis and Photo-acoustic Delivery

Henry F. Edelhauser, Jeffrey H. Boatright, John M. Nickerson and the Third ARVO/Pfizer Research Institute Working Group. Drug Delivery to Posterior Intraocular Tissues: Third Annual ARVO/Pfizer Ophthalmics Research Institute Conference. Invest. Ophthalmol. Vis. Sci. 2008;49: 4712-4720.

####

About Association for Research in Vision and Ophthalmology
ARVO is the largest eye and vision research organization in the world. Members include more than 12,500 eye and vision researchers from over 70 countries. The Association encourages and assists research, training, publication and dissemination of knowledge in vision and ophthalmology. The ARVO Foundation for Eye Research exists to provide continuing education and stable support for original and innovative vision research, particularly research with translational impact that fosters collaboration between clinicians and basic scientists. The Foundation also supports training for new vision research scientists around the world.

For more information, please click here

Contacts:
Jo Olson

240-221-2923

Copyright © Association for Research in Vision and Ophthalmology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Gold standards for nanoparticles: Understanding how small organic ions stabilize gold nanoparticles may allow for better control March 29th, 2017

Tiny sensor lays groundwork for precision X-rays detection via endoscopy:Nanoscale fiber-integrated X-ray sensor opens new doors for medical imaging and radiotherapy March 29th, 2017

Researchers uncover secret of nanomaterial that makes harvesting sunlight easier March 29th, 2017

Information storage with a nanoscale twist: Discovery of a novel rotational force inside magnetic vortices makes it easier to design ultrahigh capacity disk drives March 28th, 2017

Nanomedicine

Gold standards for nanoparticles: Understanding how small organic ions stabilize gold nanoparticles may allow for better control March 29th, 2017

Tiny sensor lays groundwork for precision X-rays detection via endoscopy:Nanoscale fiber-integrated X-ray sensor opens new doors for medical imaging and radiotherapy March 29th, 2017

Laser activated gold pyramids could deliver drugs, DNA into cells without harm: Microstructures create temporary pores in cells March 27th, 2017

Researchers make flexible glass for tiny medical devices: Glass can bend over and over again on a nanoscale March 27th, 2017

Announcements

Gold standards for nanoparticles: Understanding how small organic ions stabilize gold nanoparticles may allow for better control March 29th, 2017

Tiny sensor lays groundwork for precision X-rays detection via endoscopy:Nanoscale fiber-integrated X-ray sensor opens new doors for medical imaging and radiotherapy March 29th, 2017

Researchers uncover secret of nanomaterial that makes harvesting sunlight easier March 29th, 2017

Information storage with a nanoscale twist: Discovery of a novel rotational force inside magnetic vortices makes it easier to design ultrahigh capacity disk drives March 28th, 2017

Events/Classes

Leti and HORIBA Scientific to Host Webinar on Ultrafast Characterization Tool: Plasma Profiling Time-of-Flight Mass Spectrometer Tool Cuts Optimization Time In Layer Deposition and Fabrication of Wide Range of Applications March 27th, 2017

Leti Presents Advances in Propagation Modeling and Antenna Design for mmWave Spectrum: Paper Is One of 15 that Leti Presented at European Conference on Antennas and Propagation March 19-24 March 23rd, 2017

Next-gen steel under the microscope March 18th, 2017

UC researchers use gold coating to control luminescence of nanowires: University of Cincinnati physicists manipulate nanowire semiconductors in pursuit of making electronics smaller, faster and cheaper March 17th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project