Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > InteRNA Technologies and Cenix BioScience Ink Research Agreement for miRNA Drug Discovery

Abstract:
InteRNA Technologies B.V. and Cenix BioScience GmbH announce signing of a Research Agreement comprising functional screens in human cell lines using InteRNA's proprietary library of miRNAs.

InteRNA Technologies and Cenix BioScience Ink Research Agreement for miRNA Drug Discovery

BILTHOVEN, The Netherlands and DRESDEN, Germany | Posted on November 17th, 2008

Cenix will apply InteRNA's unique lentiviral-based miRNA overexpression library in high throughput screening assays in combination with high content, multi-parametric phenotypic analyses to identify the biological role of individual miRNAs and novel therapeutic targets in the area of cancer.

"We are very much pleased to work in collaboration with Cenix to further advance our drug discovery efforts to identify miRNA regulated targets for cancer therapy. Cenix' unique expertise on small RNA-based high-throughput screening and phenotypic analyses will be instrumental in our discovery programs", said Roel Schaapveld, Chief Operating Officer of InteRNA Technologies.

"We very much appreciate the confidence that our colleagues at InteRNA are showing by commissioning Cenix to contribute in such a substantial manner to their discovery programs" said Dr. Christophe Echeverri, CEO/CSO of Cenix. "The planned work promises very exciting scientific and technological challenges that are clearly in line with the recent diversification of Cenix activities into the miRNA space, and which we look forward to tackling together".

####

About Cenix BioScience GmbH
Founded in 1999, Cenix BioScience is the first contract research organization specialized in combining advanced applications of RNA interference (RNAi) gene silencing with high content phenotypic analyses to enhance and accelerate the discovery and pre-clinical development of novel therapeutics. Now in its 10th year, Cenix has built-up a solid track record, successfully advancing therapeutic programs for numerous major industry and academic partners by addressing the specific needs of each through fully-customized, cutting-edge research offerings covering a wide range of disease fields. The well-established core capabilities in high throughput RNAi and multi-parametric microscopy assays have yielded optimized protocols in a broad and ever-growing collection of cultured mammalian cells, and are now complemented by microRNA-focused experimentation and in vivo applications of synthetic siRNAs. As such, Cenix is a mature and fully-proven industrial research partner, applying the highest of scientific best practices and offering a breadth and depth of expertise second to none world wide.

About InteRNA Technologies B.V.

InteRNA Technologies B.V. actively explores and exploits opportunities to translate its unique collection of miRNAs and miRNA discovery and validation technologies into successful diagnostic, prognostic and therapeutic applications. The company’s primary focus is to unravel the role of its proprietary miRNAs in cancer.

InteRNA Technologies was incorporated in 2006 by Aglaia Oncology Fund and has established close relationships with the research groups of its founders Edwin Cuppen, PhD, and Eugene Berezikov, PhD, of the Hubrecht Institute (Utrecht, the Netherlands), leading scientific groups in the field of miRNA research.

More information on InteRNA can be accessed at www.interna-technologies.com.

For more information, please click here

Contacts:


InteRNA Technologies B.V.
Roel Q.J. Schaapveld, PhD, MBA
COO
Phone: +31 (0)30 229 6095

or
Cenix BioScience GmbH
Birte Sönnichsen, PhD
COO
Phone: +49 (0)351 4173-0

Copyright © Business Wire 2008

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Visualizing How Radiation Bombardment Boosts Superconductivity: Atomic-level flyovers show how impact sites of high-energy ions pin potentially disruptive vortices to keep high-current superconductivity flowing May 23rd, 2015

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Haydale Named Lead Sponsor for Cambridge Graphene Festival May 22nd, 2015

Nanomedicine

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Researchers develop new way to manufacture nanofibers May 21st, 2015

Effective Nano-Micelles Designed in Iran to Treat Cancer May 20th, 2015

Nature inspires first artificial molecular pump: Simple design mimics pumping mechanism of life-sustaining proteins found in living cells May 19th, 2015

Announcements

Visualizing How Radiation Bombardment Boosts Superconductivity: Atomic-level flyovers show how impact sites of high-energy ions pin potentially disruptive vortices to keep high-current superconductivity flowing May 23rd, 2015

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Haydale Named Lead Sponsor for Cambridge Graphene Festival May 22nd, 2015

Alliances/Partnerships/Distributorships

Samtec, Global Provider of Interconnect Systems, Joins IRT Nanoelec Silicon Photonics Program May 21st, 2015

SUNY Poly CNSE and NIOSH Launch Federal Nano Health and Safety Consortium: May 20th, 2015

Industrial Nanotech, Inc. Announces Official Launch of the Eagle Platinum Tile™ May 19th, 2015

DiATOME enables surface preparation for AFM and FIB May 19th, 2015

Research partnerships

Supercomputer unlocks secrets of plant cells to pave the way for more resilient crops: IBM partners with University of Melbourne and UQ May 21st, 2015

Taking control of light emission: Researchers find a way of tuning light waves by pairing 2 exotic 2-D materials May 20th, 2015

Efficiency record for black silicon solar cells jumps to 22.1 percent: Aalto University's researchers improved their previous record by over 3 absolute percents in cooperation with Universitat Politècnica de Catalunya May 18th, 2015

Organic nanoparticles, more lethal to tumors: Carbon-based nanoparticles could be used to sensitize cancerous tumors to proton radiotherapy and induce more focused destruction of cancer cells, a new study shows May 18th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project