Nanotechnology Now

Heifer International

Wikipedia Affiliate Button


Home > Press > RUB scientists breed biomimetic surfaces from molecular coating

Material of benefit to both contact lenses and the hulls of ships
RUB scientists breed biomimetic surfaces from molecular coating
Investigation and influence of biocompatibility

RUB scientists breed biomimetic surfaces from molecular coating

Germany | Posted on November 13th, 2008

Proteins play a decisive role in both the tolerability of contact lenses and the adherence of mussels to the hulls of ships. They develop a biofilm during their initial contact with the foreign material. This highly complex process is extremely difficult to study.

Scientists in Bochum, working in collaboration with colleagues in Frankfurt and Marburg, have developed a new method of investigation that simplifies the decoding of the mechanisms involved. The scientists breed "made-to-measure" molecular "furs" on surfaces, with the individual "hairs" consisting of peptides, short proteins. These peptides control the biocompatibility, i.e. which proteins adsorb. By using a specific peptide, the scientists were even able to create a surface which is totally resistant to proteins, a feature which is highly desirable for particular purposes (e.g. for contact lenses). The scientists have documented their new method in the Journal of the American Chemical Society.

Residual proteins are responsible for the rejection reaction of implants

During the first contact of a body fluid with foreign objects (e.g. implants), proteins are immediately adsorbed by the surface of this material. During this process, they are however damaged, lose their function and develop a biofilm. The exact nature of this biofilm, which is dependent upon the surface of the material and pretreatment, then determines whether the body rejects the implant or whether it grows inward as desired. Precise comprehension of these processes is aggravated because the adsorbed protein layers are extremely complex and thus elude meticulous research.

Peptide coating grows on a layer of gold

Researchers in Physical Chemistry (Prof. Christof Wöll) and Inorganic Chemistry (Prof. Nils Metzler-Nolte) of the Ruhr-University have developed a new class of molecules with which biofilms with predefined properties can be fabricated in a straightforward fashion. The first step consists of the application of a molecular "anchor" to short protein chains (peptides) comprised of few amino acids. If these molecular hybrids come into contact with gold, they are anchored by rigid chemical bonds to the metal, subsequently developing a coating as thick and long as the molecule. The surface of the gold layer is extremely even, thus it serves as "platter" on which diverse analytical methods can be used for precise investigation of peptide coatings. This layer is especially usefully for analysis of the adsorption of proteins. SPR (surface plasmon resonance) is a common method and enables rapid determination of the type of proteins adsorbed by peptide coatings, as well as the speed of adsorption. The data gained enables prognoses of possible rejection by the human immune system.

No protein adsorbs

In order to demonstrate the extreme flexibility of this method the scientists in Bochum made use of a peptide sequence optimized for protein rejection. The result of the analysis of the biocoating created by anchoring these peptides on the Au-surface was surprising. The protein rejection rate of the first sequence tested was almost as high as the best substance used for this purpose to date. Prof. Wöll was somewhat amazed and stated that the research team had selected the peptide amino sequence merely based on the fact that hydrophilic peptides are more likely to reject proteins, as is also the case with twisted peptides. The resultant surface completely resisted the adsorption of proteins. This property is, for example, desirable for the hulls of ships to prevent the adherence of mussels, which in turn increase the resistance and thus fuel consumption. This feature is also desirable for contact lenses, because it is conceivable that daily cleaning would then possibly no longer be necessary. The major criterion during the development of implant material is the creation of surfaces that only adsorb specific proteins thus ensuring firm growth into the body. Prof. Wöll is certain that the new method developed by his research team will help to create "tailor made" materials for this purpose.

SAMs assemble themselves

One of the fundamental properties for the synthesis of these biocompatible coatings is the development of self-assembled monolayers (SAMs) from organothiols. At the chair of Physical Chemistry I, these ultrathin, but structurally well-defined, molecular layers have already been investigated in detail and subject to constant improvement for a number of fields of application for over a decade. This highly interdisciplinary field of research necessitates excellent collaboration between the members of the faculties of physical chemistry and synthetic chemistry, the latter being capable of synthesizing the required organothiols. The peptides used in this study were connected to the thiol linkers employing an only recently developed synthesis strategy - so-called "click" chemistry - which has been improved by Prof. Metzler-Nolte. Totally diverse molecules, in this case peptides and the thiol anchor, can simply be "clicked" together using this method.


Chelmowski, Rolf; Koester, David; Prekelt, Andreas; Terfort, Andreas; Winkler, Tobis; Kerstan, Andreas; Grunwald, Christian, Metzler-Nolte, Nils; Wöll, Christof;: Peptide-based SAMs that resist the adsorption of proteins. In: Journal of the American Chemical Society. S. 14952 Nr. 130, 2008


For more information, please click here

Copyright © RUB

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Feynman Prize Winners Announced! April 26th, 2015

New ASTM Standards Will Help Educate Present and Future Nanotechnology Workforces April 26th, 2015

Heat makes electrons’ spin in magnetic superconductors April 26th, 2015

QD Vision Wins 2015 Bronze Edison Award for Color IQ™ Quantum Dot Technology April 26th, 2015


Enhanced Graphene Components for Next Generation Racing Yacht March 5th, 2015

BRAAVOO will design an unmanned surveying vessel and marine buoy that carry biosensors to monitor marine pollutants November 12th, 2014

First Observation of Electronic Structure in Ag-Rh Alloy Nanoparticles Having Hydrogen Absorbing: Storage Property –Attempting to solve the mystery of why Ag-Rh alloy nanoparticles have a similar property to Pd– October 30th, 2014

Engineered proteins stick like glue — even in water: New adhesives based on mussel proteins could be useful for naval or medical applications September 22nd, 2014


Heat makes electrons’ spin in magnetic superconductors April 26th, 2015

SEFCU, SUNY Poly CNSE Announce Winning Student-Led Teams in the 6th Annual $500,000 New York Business Plan Competition April 25th, 2015

Northwestern scientists develop first liquid nanolaser: Technology could lead to new way of doing 'lab on a chip' medical diagnostics April 25th, 2015

Fast and accurate 3-D imaging technique to track optically trapped particles April 24th, 2015


Feynman Prize Winners Announced! April 26th, 2015

New ASTM Standards Will Help Educate Present and Future Nanotechnology Workforces April 26th, 2015

Heat makes electrons’ spin in magnetic superconductors April 26th, 2015

QD Vision Wins 2015 Bronze Edison Award for Color IQ™ Quantum Dot Technology April 26th, 2015


A silver lining: UCSB researchers cradle silver nanoclusters inside synthetic DNA to create a programmed, tunable fluorescent array April 23rd, 2015

Scientists Use Nanoscale Building Blocks and DNA 'Glue' to Shape 3D Superlattices: New approach to designing ordered composite materials for possible energy applications April 23rd, 2015

UCLA nanoscientists are first to model atomic structures of three bacterial nanomachines: Cryo electron microscope enables scientists to explore the frontiers of targeted antibiotics April 21st, 2015

Rafts on the cell membrane: Researchers from TU Wien (Vienna) shed light on a big secret of cell membranes: The 'lipid rafts', which have been believed to move within the cell membrane, do not really exist April 21st, 2015

Research partnerships

Heat makes electrons’ spin in magnetic superconductors April 26th, 2015

Pseudoparticles travel through photoactive material: KIT scientists measure important process in the conversion of light energy -- publication in Nature Communications April 24th, 2015

Electron spin brings order to high entropy alloys April 23rd, 2015

Surface matters: Huge reduction of heat conduction observed in flat silicon channels April 23rd, 2015

The latest news from around the world, FREE

  Premium Products
Only the news you want to read!
 Learn More
University Technology Transfer & Patents
 Learn More
Full-service, expert consulting
 Learn More

Nanotechnology Now Featured Books


The Hunger Project