Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > A revolution for the science of diagnosis

The device uses nanotechnology to detect biomarkers, which can reveal the presence of different diseases in the body
© Shutterstock
The device uses nanotechnology to detect biomarkers, which can reveal the presence of different diseases in the body © Shutterstock

Abstract:
A team of scientists at the University of Leeds in the UK has invented a biosensor device that can identify disease using nanotechnology. The device, which may revolutionise the science of diagnosis, uses antibodies to detect biomarkers, molecules in the body used to identify disease. The aim of the ambitious ELISHA project, backed by the EU with EUR 2.7 million in funding, is to reduce diagnosis time to 15 minutes. The new invention may be on sale in just three years.

A revolution for the science of diagnosis

Europe | Posted on November 12th, 2008

There are many shortcomings to the current method of disease diagnosis, which was developed in the 1970s and is based on analysis of blood and urine samples. The tests have to be carried out in a pathology lab by highly trained staff, they take about two hours and are expensive. A simpler technique which would allow swifter diagnosis at less expense and in more a more convenient location, such a doctor's surgery, would be less intimidating for patients and more cost-effective for hospitals and health services.

Enter ELISHA (Electronic Immuno-Interfaces and Surface Nanobiotechnology: A Heteroxical Approach) and its brand new biosensor diagnosis device. A team of nine partners from five EU countries including universities, research institutes and SMEs developed the device which will make diagnosis both less expensive and more flexible to apply.

Dr Paul Millner from the faculty of biological sciences at the University of Leeds says, ‘We believe this to be the next generation diagnostic testing. We can now detect almost any analyte - a substance associated with disease - faster, cheaper and more easily than the current accepted testing methodology. We think this could revolutionise detection.'

The ELISHA device, which could be on sale in three years, is currently the size of a credit card payment machine, but the consortium plans to slim it down to the size of a mobile phone. It uses nanotechnology - manipulation of matter at microscopic scales - to detect biomarkers in blood or urine. It then gives a yes or no answer to the presence of a particular disease. Different microchips are inserted in the device to test for different diseases.

Dr Millner says, ‘We've designed simple instrumentation to make the biosensors easy to use and understand. They will work in a format similar to the glucose biosensor testing kits that diabetics currently use.'

The device could be used to identify a wide variety of diseases including prostate and ovarian cancer, strokes, heart disease, multiple sclerosis and fungal infections. The ELISHA consortium believes that it could also be versatile enough to detect tuberculosis and HIV. Its swiftness of response will mean both faster diagnosis of disease and referral to consultants.

The ELISHA technology has great potential for the future. ELISHA project manager Dr Tim Gibson says, ‘The analytes used in our research only scratch the surface of the potential applications. We've also shown that it can be used in environmental applications, for example to test for herbicides or pesticides in water and antibiotics in milk.'

####

For more information, please click here

Copyright © European Commission

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Stanford breakthrough heralds super-efficient light-based computers: Light can transmit more data while consuming far less power than electricity, and an engineering feat brings optical data transport closer to replacing wires May 29th, 2015

Donuts, math, and superdense teleportation of quantum information May 29th, 2015

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

Two UCSB Professors Receive Early Career Research Awards: The Department of Energy’s award for young scientists acknowledges UC Santa Barbara’s standing as a top tier research institution May 29th, 2015

Nanomedicine

New chip makes testing for antibiotic-resistant bacteria faster, easier: Researchers at the University of Toronto design diagnostic chip to reduce testing time from days to one hour, allowing doctors to pick the right antibiotic the first time May 28th, 2015

Arrowhead to Present at Jefferies 2015 Healthcare Conference May 27th, 2015

Seeing the action: UCSB researchers develop a novel device to image the minute forces and actions involved in cell membrane hemifusion May 27th, 2015

Nanotechnology identifies brain tumor types through MRI 'virtual biopsy' in animal studies: If results are confirmed in humans, tumor cells could someday be diagnosed by MRI imaging and treated with tumor-specific IV injections; new NIH grant will fund future study May 27th, 2015

Sensors

SouthWest NanoTechnologies Introduces AgeNT™ Transparent Conductor System at SID Display Week, Booth #543 May 28th, 2015

Technology for Tomorrow’s Market Opportunities and Challenges: LetiDays Grenoble Presents the Possibilities: June 24-25 Event Includes Focus on IoT-Augmented Mobility and Leti’s Latest Results on Silicon Technologies, Sensors, Health Applications and Smart Cities May 27th, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Record high sensitive Graphene Hall sensors May 21st, 2015

Discoveries

Stanford breakthrough heralds super-efficient light-based computers: Light can transmit more data while consuming far less power than electricity, and an engineering feat brings optical data transport closer to replacing wires May 29th, 2015

Donuts, math, and superdense teleportation of quantum information May 29th, 2015

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

New technique speeds nanoMRI imaging: Multiplexing technique for nanoscale magnetic resonance imaging developed by researchers in Switzerland cuts normal scan time from two weeks to two days May 28th, 2015

Announcements

Stanford breakthrough heralds super-efficient light-based computers: Light can transmit more data while consuming far less power than electricity, and an engineering feat brings optical data transport closer to replacing wires May 29th, 2015

Donuts, math, and superdense teleportation of quantum information May 29th, 2015

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

Two UCSB Professors Receive Early Career Research Awards: The Department of Energy’s award for young scientists acknowledges UC Santa Barbara’s standing as a top tier research institution May 29th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project