Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Clemson researchers advance nano-scale electromechanical sensors

Abstract:
Clemson physics professor Apparao Rao and his team are researching nano-scale cantilevers that have the potential to read and alert us to toxic chemicals or gases in the air. Put them into a small handheld device and the potential is there for real-time chemical alerts in battle, in industry, in health care and even at home.

"The ability to build extremely small devices to do this work has been something we've only seen so far in science-fiction movies," Rao said.

Clemson researchers advance nano-scale electromechanical sensors

Clemson, SC | Posted on November 11th, 2008

The width of a human hair or smaller, the micro- and nano-scale cantilevers look like tiny diving boards under an electron microscope. The researchers have advanced the method of oscillating cantilevers that vibrate much like a guitar string and measure amplitude and frequency under different conditions, creating highly reliable sensors that can relay a message that there's trouble in the air.

"The current way of sensing involves an optical method that uses a relatively bulky and expensive laser beam that doesn't translate well to use in nano-scale cantilevers. Our method is fully electrical and uses a small AC voltage to vibrate the cantilever and simple electronics to detect any changes in the vibration caused by gaseous chemical or biological agents," Rao said. "This method enables the development of handheld devices that would beep or flash as they read gas and chemical levels on site."

The potential applications are varied, he said. In addition to simultaneously reading multiple kinds of toxins in the environment, these electromechanical sensors have been shown to measure changes in humidity and temperature.

Preliminary results indicate that this fully electrical sensing scheme is so sensitive that it can differentiate between hydrogen and deuterium gas, very similar isotopes of the same element. Since the whole process is electrical, the size limitations that plague competing detection methods are not a problem here. The cantilevers can be shrunk down to the nano-scale and the operating electronics can be contained on a single tiny chip. Rao's research has shown that a single carbon nanotube can be used as a vibrating cantilever.

Rao credits Clemson Professor Emeritus of Physics Malcolm Skove, who discovered that measuring the resonant frequency of a cantilever at the second or higher harmonies would get rid of the so-called parasitic capacitance, an unwanted background that obscures the signal and has been a major stumbling block to the advancement of similar technology.

"When we operate at these higher harmonics of the resonant frequency, we get extremely clean signals. It makes a tremendous difference, and the National Institute for Standards and Technology is interested in promoting the Clemson method as one of the standard methods for measuring the stiffness of cantilevered beams," said Rao.

The research was funded for $500,000 over four years from the National Science Foundation and the Department of Defense. To view published papers on the research go to:
people.clemson.edu/~arao/E-papers/HDR%20package.pdf.

####

About Clemson University
Today, Clemson is redefining the term “top-tier research university” by combining the best of two models: the scientific and technological horsepower of a major research university and the highly engaged academic and social environment of a small college. With a distinctive governance system that fosters stability in leadership, unique college structures that create an unmatched climate for collaboration, and a driven, competitive spirit that encourages faculty, staff and students to embrace bold, sometimes audacious, goals, Clemson has set its sights on being one of the nation’s top-20 public universities by 2011.

That vision — first outlined by President James F. Barker ’70 and officially adopted by the Board of Trustees in 2001 — has united members of the Clemson Family who understand what it takes to be a top research university and what Clemson’s success will mean for students, for South Carolina and for society.

For more information, please click here

Contacts:
Bevan Elliott
864-656-4447


Apparao Rao
864-656-6758


WRITER:
Susan Polowczuk
864-656-2063

Copyright © Clemson University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Iranian Researchers Planning to Produce Edible Insulin January 28th, 2015

Nanoparticles that deliver oligonucleotide drugs into cells described in Nucleic Acid Therapeutics January 28th, 2015

'Bulletproof' battery: Kevlar membrane for safer, thinner lithium rechargeables January 28th, 2015

Spider electro-combs its sticky nano-filaments January 28th, 2015

Sensors

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

Iranian Scientists Produce Graphene-Based Oxygen Sensor January 23rd, 2015

Discoveries

Detecting chemical weapons with a color-changing film January 28th, 2015

Joint international research project leads to a breakthrough in terahertz spectroscopy January 28th, 2015

Iranian Researchers Planning to Produce Edible Insulin January 28th, 2015

Nanoparticles that deliver oligonucleotide drugs into cells described in Nucleic Acid Therapeutics January 28th, 2015

Announcements

Iranian Researchers Planning to Produce Edible Insulin January 28th, 2015

Nanoparticles that deliver oligonucleotide drugs into cells described in Nucleic Acid Therapeutics January 28th, 2015

'Bulletproof' battery: Kevlar membrane for safer, thinner lithium rechargeables January 28th, 2015

Spider electro-combs its sticky nano-filaments January 28th, 2015

Military

Detecting chemical weapons with a color-changing film January 28th, 2015

'Bulletproof' battery: Kevlar membrane for safer, thinner lithium rechargeables January 28th, 2015

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

Home

Materials - Next-generation insulation ... January 13th, 2015

Biosenta Inc. Updates New Household Disinfectant Testing Results; It Kills 100% of a Broad Range of Deadly Molds, Fungi, Bacteria, and Viruses, Including Ebola and Enterovirus D68 November 20th, 2014

Iranian Nano Scientists Create Flame-Resistant Polymers September 13th, 2014

Industrial Nanotech, Inc. Announces Agreement with Eagle Roofing Products to Produce Ultra-Premium Concrete Roof Tile June 17th, 2014

Industrial

Industrial Nanotech, Inc. Announces New OEM Customer January 27th, 2015

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

Iranian Scientists Produce Graphene-Based Oxygen Sensor January 23rd, 2015

Teijin to Participate in Nano Tech 2015 January 22nd, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE