Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Miniaturizing memory — taking data storage to the molecular level

Abstract:
Computers are getting smaller and smaller. And as hand-held devices — from mobile phones and cameras to music players and laptops — get more powerful, the race is on to develop memory formats that can satisfy the ever-growing demand for information storage on tiny formats.

Miniaturizing memory — taking data storage to the molecular level

Nottingham, UK | Posted on November 11th, 2008

Researchers at The University of Nottingham are now exploring ways of exploiting the unique properties of carbon nanotubes to create a cheap and compact memory cell that uses little power and writes information at high speeds.

Miniaturisation of computer devices involves continual improvement and shrinking of their basic element, the transistor. This process could soon reach its fundamental limit. As transistors approach nanoscales their operation is disrupted by quantum phenomena, such as electrons tunnelling through the barriers between wires.

Current memory technologies fall into three separate groups: dynamic random access memory (DRAM), which is the cheapest method; static random access memory (SRAM), which is the fastest memory — but both DRAM and SRAM require an external power supply to retain data; and flash memory, which is non-volatile — it does not need a power supply to retain data, but has slower read-write cycles than DRAM.

Carbon nanotubes — tubes made from rolled graphite sheets just one carbon atom thick — could provide the answer. If one nanotube sits inside another — slightly larger — one, the inner tube will ‘float' within the outer, responding to electrostatic, van der Waals and capillary forces. Passing power through the nanotubes allows the inner tube to be pushed in and out of the outer tube. This telescoping action can either connect or disconnect the inner tube to an electrode, creating the ‘zero' or ‘one' states required to store information using binary code. When the power source is switched off, van der Waals force — which governs attraction between molecules — keeps the Inner tube in contact with the electrode. This makes the memory storage non-volatile, like Flash memory.

Researchers from across the scientific disciplines will be working on the ‘nanodevices for data storage' project, which is funded by the Engineering and Physical Sciences Research Council. Colleagues from the Schools of Chemistry, Physics and Astronomy, Pharmacy and the Nottingham Nanotechnology and Nanoscience Centre will examine the methods and materials required to develop this new technology, as well as exploring other potential applications for the telescoping properties of carbon nanotubes. These include drug delivery to individual cells and nanothermometers which could differentiate between healthy and cancerous cells.

Dr Elena Bichoutskaia in the School of Chemistry at the University is leading the study. "The electronics industry is searching for a replacement of silicon-based technologies for data storage and computer memory," she said. "Existing technologies, such as magnetic hard discs, cannot be used reliably at the sub-micrometre scale and will soon reach their fundamental physical limitations.

"In this project a new device for storing information will be developed, made entirely of carbon nanotubes and combining the speed and price of dynamic memory with the non-volatility of flash memory."

####

About University of Nottingham
The University of Nottingham is ranked in the UK's Top 10 and the World's Top 100 universities by the Shanghai Jiao Tong (SJTU) and Times Higher (THE) World University Rankings.

It provides innovative and top quality teaching, undertakes world-changing research, and attracts talented staff and students from 150 nations. Described by The Times as Britain's "only truly global university", it has invested continuously in award-winning campuses in the United Kingdom, China and Malaysia. Twice since 2003 its research and teaching academics have won Nobel Prizes. The University has won the Queen's Award for Enterprise in both 2006 (International Trade) and 2007 (Innovation — School of Pharmacy), and was named 'Entrepreneurial University of the Year' at the Times Higher Education Awards 2008.

Its students are much in demand from 'blue-chip' employers. Winners of Students in Free Enterprise for four years in succession, and current holder of UK Graduate of the Year, they are accomplished artists, scientists, engineers, entrepreneurs, innovators and fundraisers. Nottingham graduates consistently excel in business, the media, the arts and sport. Undergraduate and postgraduate degree completion rates are amongst the highest in the United Kingdom.

For more information, please click here

Contacts:
Dr Elena Bichoutskaia
+44 (0)115 951 4191


Tara De Cozar
Internal Communications Manager

+44 (0)115 846 8545

Copyright © University of Nottingham

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Non-animal approach to predict impact of nanomaterials on human lung published Archives of Toxicology publishes workshop recommendations May 2nd, 2016

Making invisible physics visible: The Jayich Lab has created a new sensor technology that captures nanoscale images with high spatial resolution and sensitivity May 2nd, 2016

New drug-delivery approach holds potential for treating obesity May 2nd, 2016

Spintronics for future information technologies: Spin currents in topological insulators controlled May 2nd, 2016

Chip Technology

Spintronics for future information technologies: Spin currents in topological insulators controlled May 2nd, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Researchers create a first frequency comb of time-bin entangled qubits: Discovery is a significant step toward multi-channel quantum communication and higher capacity quantum computers April 28th, 2016

Memory Technology

Hybrid nanoantennas -- next-generation platform for ultradense data recording April 28th, 2016

Magnetic vortices defy temperature fluctuations: Common magnetic mineral is reliable witness to Earth's history April 19th, 2016

A single-atom magnet breaks new ground for future data storage April 15th, 2016

Ames Laboratory physicists discover new material that may speed computing April 12th, 2016

Nanotubes/Buckyballs/Fullerenes

Non-animal approach to predict impact of nanomaterials on human lung published Archives of Toxicology publishes workshop recommendations May 2nd, 2016

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

NREL finds nanotube semiconductors well-suited for PV systems April 27th, 2016

Researchers create artificial protein to control assembly of buckyballs April 27th, 2016

Discoveries

Non-animal approach to predict impact of nanomaterials on human lung published Archives of Toxicology publishes workshop recommendations May 2nd, 2016

Making invisible physics visible: The Jayich Lab has created a new sensor technology that captures nanoscale images with high spatial resolution and sensitivity May 2nd, 2016

New drug-delivery approach holds potential for treating obesity May 2nd, 2016

Spintronics for future information technologies: Spin currents in topological insulators controlled May 2nd, 2016

Announcements

Non-animal approach to predict impact of nanomaterials on human lung published Archives of Toxicology publishes workshop recommendations May 2nd, 2016

Making invisible physics visible: The Jayich Lab has created a new sensor technology that captures nanoscale images with high spatial resolution and sensitivity May 2nd, 2016

New drug-delivery approach holds potential for treating obesity May 2nd, 2016

Spintronics for future information technologies: Spin currents in topological insulators controlled May 2nd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic