Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > NC State finds new nanomaterial could be breakthrough for implantable medical devices

Abstract:
A team of researchers led by North Carolina State University has made a breakthrough that could lead to new dialysis devices and a host of other revolutionary medical implants. The researchers have found that the unique properties of a new material can be used to create new devices that can be implanted into the human body - including blood glucose sensors for diabetics and artificial hemo-dialysis membranes that can scrub impurities from the blood.

NC State finds new nanomaterial could be breakthrough for implantable medical devices

Raleigh, NC | Posted on November 10th, 2008

Researchers have long sought to develop medical devices that could be implanted into patients for a variety of purposes, such as monitoring glucose levels in diabetic patients. However, existing materials present significant problems. For example, devices need to be made of a material that prevents the body's proteins from building up on sensors and preventing them from working properly. And any implanted device also needs to avoid provoking an inflammatory response from the body that would result in the body's walling off the device or rejecting it completely.

Now a new study finds that nanoporous ceramic membranes may be used to resolve these issues. Dr. Roger Narayan - an associate professor in the joint biomedical engineering department of NC State and the University of North Carolina at Chapel Hill - led the research and says the nanoporous membranes could be used to "create an interface between human tissues and medical devices that is free of protein buildup."

The new research, published in a special issue of Biomedical Materials, is the first in-depth study of the biological and physical properties of the membranes. The study suggests that the human body will not reject the nanoporous ceramic membrane. Narayan adds that this could be a major advance for the development of kidney dialysis membranes and other medical devices whose development has been stalled by poor compatibility with human tissues. Narayan was also the lead researcher on the team that first developed these new materials.

Narayan's co-authors on the paper include NC State materials science engineering doctoral students Ravi Aggarwal and Wei Wei; NC State postdoctoral research associate Dr. Chunming Jin; Dr. Nancy Monteiro-Riviere, professor of investigative dermatology and toxicology at NC State's College of Veterinary Medicine and the Center for Chemical Toxicology Research and Pharmacokinetics; and Rene Crombez and Dr. Weidian Shen of Eastern Michigan University.

Note to editors: The study abstract follows.

"Mechanical and biological properties of nanoporous carbon membranes"

Authors: Dr. Roger J. Narayan, Ravi Aggarwal, Wei Wei, Dr. Chunming Jin, Dr. Nancy A. Monteiro-Riviere, North Carolina State University; Rene Crombez, Dr. Weidian Shen, Eastern Michigan University
Published: Aug. 8, 2008, in Biomedical Materials
Abstract: Implantable blood glucose sensors have inadequate membrane-tissue interfaces for long term use. Biofouling and inflammation processes restrict biosensor membrane stability. An ideal biosensor membrane material must prevent protein adsorption and exhibit cell compatibility. In addition, a membrane must exhibit high porosity and low thickness in order to allow the biosensor to respond to analyte fluctuations. In this study, the structural, mechanical and biological properties of nanoporous alumina membranes coated with diamond-like carbon thin films were examined using scanning probe microscopy, nanoindentation and MTT viability assay. We anticipate that this novel membrane material could find use in immunoisolation devices, kidney dialysis membranes and other medical devices encountering biocompatibility issues that limit in vivo function.

####

For more information, please click here

Contacts:
Matt Shipman

919-515-6386

Copyright © North Carolina State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Nanomedicine

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

'5-D protein fingerprinting' could give insights into Alzheimer's, Parkinson's January 19th, 2017

New active filaments mimic biology to transport nano-cargo: A new design for a fully biocompatible motility engine transports colloidal particles faster than diffusion with active filaments January 11th, 2017

Discoveries

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Materials/Metamaterials

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

Strength of hair inspires new materials for body armor January 18th, 2017

Announcements

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale January 20th, 2017

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project