Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Hydrogen tank lighter than battery

Abstract:


Dutch-sponsored researcher Robin Gremaud has shown that an alloy of the metals magnesium, titanium and nickel is excellent at absorbing hydrogen. This light alloy brings us a step closer to the everyday use of hydrogen as a source of fuel for powering vehicles. A hydrogen 'tank' using this alloy would have a relative weight that is sixty percent less than a battery pack. In order to find the best alloy Gremaud developed a method which enabled simultaneous testing of thousands of samples of different metals for their capacity to absorb hydrogen. The British company Ilika in Southampton has shown considerable interest. Hydrogen is considered to be a clean and therefore important fuel of the future. This gas can be used directly in cars in an internal combustion engine, like in BMW's hydrogen vehicle, or it can be converted into electrical energy in so-called fuel cells, like in the Citaro buses in service in Amsterdam.

Hydrogen tank lighter than battery

Netherlands | Posted on November 4th, 2008

The major problem of using hydrogen in transport is the secure storage of this highly explosive gas. This can be realised by using metals that absorb the gas. However, a drawback of this approach is that it makes the hydrogen 'tanks' somewhat cumbersome.

The battery, the competing form of storage for electrical energy, comes off even worse. Driving four hundred kilometres with an electric car, such as the Toyota Prius, would require the car to carry 317 kilos of modern lithium batteries for its journey. With Gremaud's light metal alloy this same distance would require a hydrogen tank of 'only' two hundred kilos. Although this new metal alloy is important for the development of hydrogen as a fuel, the discovery of the holy grail of hydrogen storage is still some way off.

Hydrogenography

In his research Gremaud made use of a technique for measuring the absorbance of hydrogen by metals, based on the phenomenon of 'switchable mirrors' discovered at the VU University Amsterdam. About ten years ago researchers at the VU discovered that certain materials lose their reflection by absorbing hydrogen. This technique became known as hydrogenography, or 'writing with hydrogen'. Using this technique, Gremaud was able to simultaneously analyse the efficacy of thousands of different combinations of the metals magnesium, titanium and nickel. Traditional methods require separate testing for each alloy.

The analysis requires each of the three metals to be eroded from an individual source and deposited onto a transparent film in a thin layer of 100 nanometres using so-called sputtering deposition. This ensures that the three metals are deposited onto the film in many different ratios. When the film is exposed to different amounts of hydrogen, it is clearly visible, even to the naked eye, which composition of metals is best at absorbing hydrogen.

Gremaud is the first to use this method for measuring hydrogen absorption. The British company Ilika in Southampton wants to build a hydrogen analyser using this technique.

####

For more information, please click here

Copyright © Netherlands Organization for Scientific Research

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

Discoveries

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Announcements

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

Energy

Harnessing solar and wind energy in one device could power the 'Internet of Things' May 26th, 2016

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Technique improves the efficacy of fuel cells: Research demonstrates a new phase transition from metal to ionic conductor May 18th, 2016

Fuel Cells

Technique improves the efficacy of fuel cells: Research demonstrates a new phase transition from metal to ionic conductor May 18th, 2016

Ruthenium nanoframes open the doors to better catalysts April 4th, 2016

Saving sunshine for a rainy day: New catalyst offers efficient storage of green energy: Team led by U of T Engineering designs world's most efficient catalyst for storing energy as hydrogen by splitting water molecules March 28th, 2016

Carbon leads the way in clean energy: Groundbreaking research at Griffith University is leading the way in clean energy, with the use of carbon as a way to deliver energy using hydrogen March 23rd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic