Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Hydrogen tank lighter than battery

Abstract:


Dutch-sponsored researcher Robin Gremaud has shown that an alloy of the metals magnesium, titanium and nickel is excellent at absorbing hydrogen. This light alloy brings us a step closer to the everyday use of hydrogen as a source of fuel for powering vehicles. A hydrogen 'tank' using this alloy would have a relative weight that is sixty percent less than a battery pack. In order to find the best alloy Gremaud developed a method which enabled simultaneous testing of thousands of samples of different metals for their capacity to absorb hydrogen. The British company Ilika in Southampton has shown considerable interest. Hydrogen is considered to be a clean and therefore important fuel of the future. This gas can be used directly in cars in an internal combustion engine, like in BMW's hydrogen vehicle, or it can be converted into electrical energy in so-called fuel cells, like in the Citaro buses in service in Amsterdam.

Hydrogen tank lighter than battery

Netherlands | Posted on November 4th, 2008

The major problem of using hydrogen in transport is the secure storage of this highly explosive gas. This can be realised by using metals that absorb the gas. However, a drawback of this approach is that it makes the hydrogen 'tanks' somewhat cumbersome.

The battery, the competing form of storage for electrical energy, comes off even worse. Driving four hundred kilometres with an electric car, such as the Toyota Prius, would require the car to carry 317 kilos of modern lithium batteries for its journey. With Gremaud's light metal alloy this same distance would require a hydrogen tank of 'only' two hundred kilos. Although this new metal alloy is important for the development of hydrogen as a fuel, the discovery of the holy grail of hydrogen storage is still some way off.

Hydrogenography

In his research Gremaud made use of a technique for measuring the absorbance of hydrogen by metals, based on the phenomenon of 'switchable mirrors' discovered at the VU University Amsterdam. About ten years ago researchers at the VU discovered that certain materials lose their reflection by absorbing hydrogen. This technique became known as hydrogenography, or 'writing with hydrogen'. Using this technique, Gremaud was able to simultaneously analyse the efficacy of thousands of different combinations of the metals magnesium, titanium and nickel. Traditional methods require separate testing for each alloy.

The analysis requires each of the three metals to be eroded from an individual source and deposited onto a transparent film in a thin layer of 100 nanometres using so-called sputtering deposition. This ensures that the three metals are deposited onto the film in many different ratios. When the film is exposed to different amounts of hydrogen, it is clearly visible, even to the naked eye, which composition of metals is best at absorbing hydrogen.

Gremaud is the first to use this method for measuring hydrogen absorption. The British company Ilika in Southampton wants to build a hydrogen analyser using this technique.

####

For more information, please click here

Copyright © Netherlands Organization for Scientific Research

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Strength of hair inspires new materials for body armor January 18th, 2017

Self-assembling particles brighten future of LED lighting January 18th, 2017

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Nanoparticle exposure can awaken dormant viruses in the lungs January 17th, 2017

Discoveries

Strength of hair inspires new materials for body armor January 18th, 2017

Self-assembling particles brighten future of LED lighting January 18th, 2017

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Nanoparticle exposure can awaken dormant viruses in the lungs January 17th, 2017

Announcements

Strength of hair inspires new materials for body armor January 18th, 2017

Self-assembling particles brighten future of LED lighting January 18th, 2017

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Nanoparticle exposure can awaken dormant viruses in the lungs January 17th, 2017

Energy

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Stability challenge in perovskite solar cell technology: New research reveals intrinsic instability issues of iodine-containing perovskite solar cells December 26th, 2016

Nanoscale 'conversations' create complex, multi-layered structures: New technique leverages controlled interactions across surfaces to create self-assembled materials with unprecedented complexity December 22nd, 2016

Safe and inexpensive hydrogen production as a future energy source: Osaka University researchers develop efficient 'green' hydrogen production system that operates at room temperature in air December 21st, 2016

Fuel Cells

Scientists boost catalytic activity for key chemical reaction in fuel cells: New platinum-based catalysts with tensile surface strain could improve fuel cell efficiency December 19th, 2016

It's basic: Alternative fuel cell technology reduces cost: Study sets performance targets for metal-free fuel cell membrane December 13th, 2016

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Water vapor sets some oxides aflutter: Newly discovered phenomenon could affect materials in batteries and water-splitting devices October 3rd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project