Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Hybrid materials for future solar cells

Transmission electron microscope image of CdSe nanoparticles covering a multi-wall carbon nanotube. (c) Madrimasd
Transmission electron microscope image of CdSe nanoparticles covering a multi-wall carbon nanotube. (c) Madrimasd

Abstract:
The Instituto Madrileno de Estudios Avanzados en Nanociencia (IMDEA Nanoscience) collaborates together with the University of Hamburg in the development of composite materials based on semiconductor nanoparticles and carbon nanotubes as functional materials for efficient light emitting diodes and photovoltaic devices.

Hybrid materials for future solar cells

Madrid, Spain and Hamburg, Germany | Posted on November 4th, 2008

Semiconductor nanocrystals or also called quantum dots exhibit outstanding optical properties compared to organic dyes. Due to the quantum confinement their emission colour can be continuously tuned from the ultraviolet to the near infrared range by changing the size and chemical composition. They exhibit a broad absorption spectrum, a narrow emission band and large absorption cross sections. Their surface can be covered by a few monolayers of different semiconductor materials in such a way that we can either improve their luminescent properties and stability or avoid the fluorescence to obtain charge carriers. The latter effect opens tremendous alternatives in photovoltaics. Due to their optical properties, semiconductor nanoparticles are studied in different disciplines, from optics to biomedicine.

Thanks to a remarkable effort in the synthetic activities in the last 20 years, we can nowadays produce nanoparticles of different materials controlling their size, shape, and surface properties. Examples of nanoparticles produced by non hydrolytic colloidal synthetic methods are CdS, CdTe, InP, GaAs, PbS, or PbSe. However, the most studied system is CdSe, with tunable emission from blue to red. Due to the synthetic approach (hot injection method), the surface of these nanoparticles is capped with an organic shell that protects them and makes them stable in non-polar organic solvents. It is also possible to controllably replace the initial organic shell for water compatible ones. The organic shell plays a relevant role in the quantum efficiency of the nanoparticles and their stability in different media. However, this shell prevents high electrical conduction.

Carbon nanotubes are another example of nanomaterials with extraordinary electrical properties. They consist of one or several rolled up graphene layers. In the case of a single layer they are called single-wall and multi-wall when several layers are rolled-up. Hybrid materials composed of semiconductor nanoparticles and carbon nanotubes combine the high absorption properties of the former and the high electrical conductivity of the latter. One of the main drawbacks in the formation of such hybrid structures focuses on the type of interaction between them. Most of the existing procedures involve the growth of nanoparticles on previous defect sites provoked on the surface or edges of carbon nanotubes by aggressive chemical means. These aggressive treatments render an oxidised nanotube surface or even structural damage that deteriorates their outstanding electrical, mechanical, and optical properties significantly. Thus, supramolecular or electrostatic functionalisations are better approaches for photovoltaic applications.

Dr Beatriz H. Juarez, from IMDEA Nanoscience, works on the preparation of hybrid materials with high coverage without modifying the electrical properties of the tubes. Furthermore, the monodispersity of the nanoparticles with high crystallographic quality and a close contact between nanoparticles and nanotubes are also under investigation. The composites show photoelectrical response, injecting charge carriers in the nanotubes upon nanoparticle excitation. Although in an initial stage, the results obtained up to now points out the high potential of these composites to build up photovoltaic devices and solar cells.

####

For more information, please click here

Copyright © Instituto Madrileno de Estudios Avanzados en Nanociencia

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Detecting small metallic contaminants in food via magnetization: A practical metallic-contaminant detecting system using three high-Tc RF superconducting quantum interference devices (SQUIDs) July 29th, 2015

Controlling phase changes in solids: Controlling phase changes in solids July 29th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

Display technology/LEDs/SS Lighting/OLEDs

Controlling phase changes in solids: Controlling phase changes in solids July 29th, 2015

Liquipel Debuts Eyesight-Saving ION-Glass Blue Light Protection for iPhones and Androids at RadioShack Stores Nationwide: Liquipel's Unique Protective Screen, Available at RadioShack, Cuts Harmful Blue Light Implicated in Macular Degeneration by 10x July 28th, 2015

Nanotubes/Buckyballs/Fullerenes

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

'Seeing' molecular interactions could give boost to organic electronics July 28th, 2015

UT Dallas nanotechnology research leads to super-elastic conducting fibers July 24th, 2015

Nano-C Receives EPA Approvals for Single Walled Carbon Nanotubes July 21st, 2015

Announcements

Detecting small metallic contaminants in food via magnetization: A practical metallic-contaminant detecting system using three high-Tc RF superconducting quantum interference devices (SQUIDs) July 29th, 2015

Controlling phase changes in solids: Controlling phase changes in solids July 29th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

'Seeing' molecular interactions could give boost to organic electronics July 28th, 2015

Energy

Smaller, faster, cheaper: A new type of modulator for the future of data transmission July 27th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Industrial Nanotech, Inc. Provides Update on PCAOB Audited Financials July 27th, 2015

Ultra-thin hollow nanocages could reduce platinum use in fuel cell electrodes July 24th, 2015

Quantum Dots/Rods

Quantum networks: Back and forth are not equal distances! July 28th, 2015

Superfast fluorescence sets new speed record: Plasmonic device has speed and efficiency to serve optical computers July 27th, 2015

Engineered hybrid crystal opens new frontiers for high-efficiency lighting: University of Toronto researchers successfully combine 2 different materials to create new hyper-efficient light-emitting crystal July 16th, 2015

Down to the quantum dot: Jülich researchers develop ultrahigh-resolution 3-D microscopy technique for electric fields July 7th, 2015

Alliances/Trade associations/Partnerships/Distributorships

Liquipel Debuts Eyesight-Saving ION-Glass Blue Light Protection for iPhones and Androids at RadioShack Stores Nationwide: Liquipel's Unique Protective Screen, Available at RadioShack, Cuts Harmful Blue Light Implicated in Macular Degeneration by 10x July 28th, 2015

Dais Analytic's Business Affiliate in China Announces Ten-Year Strategic Energy Efficiency Business Arrangement With COFCO: Dais Beijing to Perform Feasibility Study on Over 80 Buildings to Improve Efficiencies as Part of Overall Hotel Energy-Savings Project July 23rd, 2015

Leti and Diabeloop Project Aims at Developing Artificial Pancreas for Diabetes Treatment July 22nd, 2015

Imec and Panasonic Demonstrate Breakthrough RRAM Cell July 16th, 2015

Research partnerships

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

Stretching the limits on conducting wires July 25th, 2015

Ultra-thin hollow nanocages could reduce platinum use in fuel cell electrodes July 24th, 2015

UT Dallas nanotechnology research leads to super-elastic conducting fibers July 24th, 2015

Solar/Photovoltaic

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Rice University finding could lead to cheap, efficient metal-based solar cells: Plasmonics study suggests how to maximize production of 'hot electrons' July 22nd, 2015

Perovskite solar technology shows quick energy returns: New technology beats current solar panel technology in life-cycle energy assessment July 20th, 2015

Nanowires give 'solar fuel cell' efficiency a tenfold boost: Eindhoven researchers make important step towards a solar cell that generates hydrogen July 17th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project