Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Hybrid materials for future solar cells

Transmission electron microscope image of CdSe nanoparticles covering a multi-wall carbon nanotube. (c) Madrimasd
Transmission electron microscope image of CdSe nanoparticles covering a multi-wall carbon nanotube. (c) Madrimasd

Abstract:
The Instituto Madrileno de Estudios Avanzados en Nanociencia (IMDEA Nanoscience) collaborates together with the University of Hamburg in the development of composite materials based on semiconductor nanoparticles and carbon nanotubes as functional materials for efficient light emitting diodes and photovoltaic devices.

Hybrid materials for future solar cells

Madrid, Spain and Hamburg, Germany | Posted on November 4th, 2008

Semiconductor nanocrystals or also called quantum dots exhibit outstanding optical properties compared to organic dyes. Due to the quantum confinement their emission colour can be continuously tuned from the ultraviolet to the near infrared range by changing the size and chemical composition. They exhibit a broad absorption spectrum, a narrow emission band and large absorption cross sections. Their surface can be covered by a few monolayers of different semiconductor materials in such a way that we can either improve their luminescent properties and stability or avoid the fluorescence to obtain charge carriers. The latter effect opens tremendous alternatives in photovoltaics. Due to their optical properties, semiconductor nanoparticles are studied in different disciplines, from optics to biomedicine.

Thanks to a remarkable effort in the synthetic activities in the last 20 years, we can nowadays produce nanoparticles of different materials controlling their size, shape, and surface properties. Examples of nanoparticles produced by non hydrolytic colloidal synthetic methods are CdS, CdTe, InP, GaAs, PbS, or PbSe. However, the most studied system is CdSe, with tunable emission from blue to red. Due to the synthetic approach (hot injection method), the surface of these nanoparticles is capped with an organic shell that protects them and makes them stable in non-polar organic solvents. It is also possible to controllably replace the initial organic shell for water compatible ones. The organic shell plays a relevant role in the quantum efficiency of the nanoparticles and their stability in different media. However, this shell prevents high electrical conduction.

Carbon nanotubes are another example of nanomaterials with extraordinary electrical properties. They consist of one or several rolled up graphene layers. In the case of a single layer they are called single-wall and multi-wall when several layers are rolled-up. Hybrid materials composed of semiconductor nanoparticles and carbon nanotubes combine the high absorption properties of the former and the high electrical conductivity of the latter. One of the main drawbacks in the formation of such hybrid structures focuses on the type of interaction between them. Most of the existing procedures involve the growth of nanoparticles on previous defect sites provoked on the surface or edges of carbon nanotubes by aggressive chemical means. These aggressive treatments render an oxidised nanotube surface or even structural damage that deteriorates their outstanding electrical, mechanical, and optical properties significantly. Thus, supramolecular or electrostatic functionalisations are better approaches for photovoltaic applications.

Dr Beatriz H. Juarez, from IMDEA Nanoscience, works on the preparation of hybrid materials with high coverage without modifying the electrical properties of the tubes. Furthermore, the monodispersity of the nanoparticles with high crystallographic quality and a close contact between nanoparticles and nanotubes are also under investigation. The composites show photoelectrical response, injecting charge carriers in the nanotubes upon nanoparticle excitation. Although in an initial stage, the results obtained up to now points out the high potential of these composites to build up photovoltaic devices and solar cells.

####

For more information, please click here

Copyright © Instituto Madrileno de Estudios Avanzados en Nanociencia

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Triboelectric Nanogenerators Boost Mass Spectrometry Performance March 1st, 2017

Biosensors: Distance makes the signal grow stronger March 1st, 2017

Smart multi-layered magnetic material acts as an electric switch: New study reveals characteristic of islands of magnetic metals between vacuum gaps, displaying tunnelling electric current March 1st, 2017

Bioinspired process makes materials light, robust, programmable at nano- to macro-scale: Ultralight web of silk nano fibers withstands load 4,000 times its weight February 28th, 2017

Display technology/LEDs/SS Lighting/OLEDs

Research opens door to smaller, cheaper, more agile communications tech February 16th, 2017

Dual-function nanorod LEDs could make multifunctional displays February 11th, 2017

1,000 times more efficient nano-LED opens door to faster microchips February 5th, 2017

Leti Presents First Results in LED Pixelization & Record Resolution for Micro-Displays at Photonics West February 3rd, 2017

Nanotubes/Buckyballs/Fullerenes

Boron atoms stretch out, gain new powers: Rice University simulations demonstrate 1-D material's stiffness, electrical versatility January 26th, 2017

New stem cell technique shows promise for bone repair January 25th, 2017

Captured on video: DNA nanotubes build a bridge between 2 molecular posts: Research may lead to new lines of direct communication with cells January 9th, 2017

Nano-chimneys can cool circuits: Rice University scientists calculate tweaks to graphene would form phonon-friendly cones January 4th, 2017

Announcements

Triboelectric Nanogenerators Boost Mass Spectrometry Performance March 1st, 2017

Biosensors: Distance makes the signal grow stronger March 1st, 2017

Smart multi-layered magnetic material acts as an electric switch: New study reveals characteristic of islands of magnetic metals between vacuum gaps, displaying tunnelling electric current March 1st, 2017

Bioinspired process makes materials light, robust, programmable at nano- to macro-scale: Ultralight web of silk nano fibers withstands load 4,000 times its weight February 28th, 2017

Energy

Sandia use confined nanoparticles to improve hydrogen storage materials performance: Big changes from a small package for hydrogen storage February 25th, 2017

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

In-cell molecular sieve from protein crystal February 14th, 2017

Quantum Dots/Rods

Particle Works creates range of high performance quantum dots February 23rd, 2017

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

Carbon dots dash toward 'green' recycling role: Rice scientists, colleagues use doped graphene quantum dots to reduce carbon dioxide to fuel December 18th, 2016

Two electrons go on a quantum walk and end up in a qudit: Russian scientists find a way to reliably connect quantum elements December 13th, 2016

Alliances/Trade associations/Partnerships/Distributorships

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

Leti Coordinating Project to Adapt Obstacle-Detection Technology Used in Autonomous Cars for Portable and Wearable Systems: INSPEX to Combine Knowhow of Nine European Organizations to Create Portable and Wearable Spatial-Exploration Systems February 2nd, 2017

GLOBALFOUNDRIES Expands Partner Program to Speed Time-to-Market of FDX™ Solutions: Increased support affirms FDXcelerator™ Program’s vital role in promoting broader deployment of GLOBALFOUNDRIES’ FDX™ portfolio December 15th, 2016

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Research partnerships

Nano 'sandwich' offers unique properties: Rice University researchers simulate two-dimensional hybrids for optoelectronics February 27th, 2017

Sandia use confined nanoparticles to improve hydrogen storage materials performance: Big changes from a small package for hydrogen storage February 25th, 2017

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Graphene foam gets big and tough: Rice University's nanotube-reinforced material can be shaped, is highly conductive February 13th, 2017

Solar/Photovoltaic

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Material can turn sunlight, heat and movement into electricity -- all at once: Extracting energy from multiple sources could help power wearable technology February 9th, 2017

NREL research pinpoints promise of polycrystalline perovskites February 8th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project