Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > New nanocluster to boost thin films for semiconductors: University of Oregon, Oregon State discovery speeds production and yields; may lead to greener

Graduate student Zachary Mensinger, left, talks with co-authors Lev N. Zakharov, center, and Darren Johnson in Zakharov's lab in the underground Lorry I. Lokey Laboratories at the University of Oregon.

Credit: Photo by Jim Barlow
Graduate student Zachary Mensinger, left, talks with co-authors Lev N. Zakharov, center, and Darren Johnson in Zakharov's lab in the underground Lorry I. Lokey Laboratories at the University of Oregon.

Credit: Photo by Jim Barlow

Abstract:
Oregon researchers have synthesized an elusive metal-hydroxide compound in sufficient and rapidly produced yields, potentially paving the way for improved precursor inks that could boost semiconductor capabilities for large-area applications.

New nanocluster to boost thin films for semiconductors: University of Oregon, Oregon State discovery speeds production and yields; may lead to greener

Eugene, OR | Posted on November 1st, 2008

The key to a "bottom-up" production of possibly the first heterometallic gallium-indium hydroxide nanocluster was the substitution of nitroso-butylamine as an additive in place of nitrosobenzene.

The substitute was identified during a comprehensive screening of potential alternatives by Zachary L. Mensinger, a doctoral student in the lab of University of Oregon chemist Darren W. Johnson. The additive acts to optimize and speed crystallization, allowing for reaction yields up to 95 percent. Comparable compounds traditionally made under caustic conditions often take months or even years to crystallize and result in low yields.

"The benefit is that we can predictably control the ratio of gallium and indium in these structures at molecular levels, which can result in the same control in the fabrication of semiconductor thin films," Johnson said. "We can tailor the properties for specific applications or for different performance levels."

Six University of Oregon and Oregon State University collaborators, working under the umbrella of the Oregon Nanoscience and Microtechnologies Institute (ONAMI), a state signature research center, describe their findings a paper to appear in the German Chemical Society's journal Angewandte Chemie (Applied Chemistry) International. The research, published early online, also was performed under the auspices of a new National Science Foundation-funded Center for Green Materials Chemistry, operated jointly by the two Oregon universities.

"Researchers working in the solid-state materials community are looking at these kinds of nanoclusters as precursors for thin films and other advanced materials, but you typically cannot get them in high enough yields," said Johnson, who also is a member of the UO's Materials Science Institute. "Our synthesis, however, allows for gram-scale quantities."

The results represent a significant breakthrough in the way liquids are produced for semiconductor fabrication, said co-author Douglas A. Keszler, distinguished professor of chemistry at Oregon State and adjunct UO chemistry professor. "We now have new methods for pushing printed inorganic electronics to higher levels of performance within a useful class of materials."

Researchers in Johnson's lab have been experimenting with low-temperature production of a series of such heterometallic nanoclusters, which consist of 13 atoms and contain two different metals in the metal 13 framework, which may prove desirable for long-term applications in solid-state electronics. The nanocluster identified in the paper is labeled a Ga7In6 hydroxide.

"We're starting from a bottom-up approach, in that we can make these with the ratios we desire already built in," Mensinger said. "Using this nitroso compound, we get a higher yield and at a larger scale. I screened several of these compounds to narrow down the best choice. We can also re-use the nitroso compound. It is still present at the end of the reaction, so we can remove it and use it in future reactions."

While the nitroso compound produces usable amounts of nanoclusters for potential semiconductor applications and is reusable in subsequent production, it is toxic, Johnson noted. "It is great because it allowed us to make these clusters that had never been made before, but it is not truly a green-chemistry method," Johnson said. "We're looking at how it works and hope to replace it with a more benign reagent."

Co-authors with Mensinger, Johnson and Keszler on the paper were Jason T. Gatlin and Lev N. Zakharov, both of the University of Oregon, and Stephen T. Meyers, a graduate student of Keszler's at OSU.

The National Science Foundation helped support the research through a CAREER award to Johnson and an Integrative Graduate Education and Research Training grant. Additional funding came from the Research Corp. through a 2006 Cottrell Scholar award to Johnson and Army Research Laboratory funds provided through ONAMI.

####

About University of Oregon
The University of Oregon is a world-class teaching and research institution and Oregon's flagship public university. The UO is a member of the Association of American Universities (AAU), an organization made up of 62 of the leading public and private research institutions in the United States and Canada. Membership in the AAU is by invitation only. The University of Oregon is one of only two AAU members in the Pacific Northwest.

For more information, please click here

Contacts:
Jim Barlow

541-346-3481

Sources:
Darren Johnson
assistant professor of chemistry
541-346-1695


Douglas Keszler
distinguished professor of chemistry
Oregon State University
541-737-6736

Copyright © University of Oregon

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Johnson faculty page

Keszler faculty page

UO chemistry departmen

UO Materials Science Institute

Related News Press

News and information

Transparent, electrically conductive network of encapsulated silver nanowires: A novel electrode for optoelectronics August 1st, 2015

Harris & Harris Group Portfolio Company, HZO, Announces Partnerships with Dell and Motorola August 1st, 2015

Advances and Applications in Biosensing, Sensor Power, and Sensor R&D to be Covered at Sensors Global Summit August 1st, 2015

Kalam: versatility personified August 1st, 2015

Chip Technology

This could replace your silicon computer chips: A new semiconductor material made from black phosphorus may be a candidate to replace silicon in future tech July 30th, 2015

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

Announcements

Self-assembling, biomimetic membranes may aid water filtration August 1st, 2015

Transparent, electrically conductive network of encapsulated silver nanowires: A novel electrode for optoelectronics August 1st, 2015

Harris & Harris Group Portfolio Company, HZO, Announces Partnerships with Dell and Motorola August 1st, 2015

Advances and Applications in Biosensing, Sensor Power, and Sensor R&D to be Covered at Sensors Global Summit August 1st, 2015

Alliances/Trade associations/Partnerships/Distributorships

Harris & Harris Group Portfolio Company, HZO, Announces Partnerships with Dell and Motorola August 1st, 2015

The National Space Society Pays Tribute to Dr. Kalam -- One Of Our Leading Lights Has Joined The Stars August 1st, 2015

Liquipel Debuts Eyesight-Saving ION-Glass Blue Light Protection for iPhones and Androids at RadioShack Stores Nationwide: Liquipel's Unique Protective Screen, Available at RadioShack, Cuts Harmful Blue Light Implicated in Macular Degeneration by 10x July 28th, 2015

Dais Analytic's Business Affiliate in China Announces Ten-Year Strategic Energy Efficiency Business Arrangement With COFCO: Dais Beijing to Perform Feasibility Study on Over 80 Buildings to Improve Efficiencies as Part of Overall Hotel Energy-Savings Project July 23rd, 2015

Research partnerships

Newly-Developed Polymers Control Size of Nanoparticles during Production Process July 30th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

Stretching the limits on conducting wires July 25th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project