Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > New nanocluster to boost thin films for semiconductors: University of Oregon, Oregon State discovery speeds production and yields; may lead to greener

Graduate student Zachary Mensinger, left, talks with co-authors Lev N. Zakharov, center, and Darren Johnson in Zakharov's lab in the underground Lorry I. Lokey Laboratories at the University of Oregon.

Credit: Photo by Jim Barlow
Graduate student Zachary Mensinger, left, talks with co-authors Lev N. Zakharov, center, and Darren Johnson in Zakharov's lab in the underground Lorry I. Lokey Laboratories at the University of Oregon.

Credit: Photo by Jim Barlow

Abstract:
Oregon researchers have synthesized an elusive metal-hydroxide compound in sufficient and rapidly produced yields, potentially paving the way for improved precursor inks that could boost semiconductor capabilities for large-area applications.

New nanocluster to boost thin films for semiconductors: University of Oregon, Oregon State discovery speeds production and yields; may lead to greener

Eugene, OR | Posted on November 1st, 2008

The key to a "bottom-up" production of possibly the first heterometallic gallium-indium hydroxide nanocluster was the substitution of nitroso-butylamine as an additive in place of nitrosobenzene.

The substitute was identified during a comprehensive screening of potential alternatives by Zachary L. Mensinger, a doctoral student in the lab of University of Oregon chemist Darren W. Johnson. The additive acts to optimize and speed crystallization, allowing for reaction yields up to 95 percent. Comparable compounds traditionally made under caustic conditions often take months or even years to crystallize and result in low yields.

"The benefit is that we can predictably control the ratio of gallium and indium in these structures at molecular levels, which can result in the same control in the fabrication of semiconductor thin films," Johnson said. "We can tailor the properties for specific applications or for different performance levels."

Six University of Oregon and Oregon State University collaborators, working under the umbrella of the Oregon Nanoscience and Microtechnologies Institute (ONAMI), a state signature research center, describe their findings a paper to appear in the German Chemical Society's journal Angewandte Chemie (Applied Chemistry) International. The research, published early online, also was performed under the auspices of a new National Science Foundation-funded Center for Green Materials Chemistry, operated jointly by the two Oregon universities.

"Researchers working in the solid-state materials community are looking at these kinds of nanoclusters as precursors for thin films and other advanced materials, but you typically cannot get them in high enough yields," said Johnson, who also is a member of the UO's Materials Science Institute. "Our synthesis, however, allows for gram-scale quantities."

The results represent a significant breakthrough in the way liquids are produced for semiconductor fabrication, said co-author Douglas A. Keszler, distinguished professor of chemistry at Oregon State and adjunct UO chemistry professor. "We now have new methods for pushing printed inorganic electronics to higher levels of performance within a useful class of materials."

Researchers in Johnson's lab have been experimenting with low-temperature production of a series of such heterometallic nanoclusters, which consist of 13 atoms and contain two different metals in the metal 13 framework, which may prove desirable for long-term applications in solid-state electronics. The nanocluster identified in the paper is labeled a Ga7In6 hydroxide.

"We're starting from a bottom-up approach, in that we can make these with the ratios we desire already built in," Mensinger said. "Using this nitroso compound, we get a higher yield and at a larger scale. I screened several of these compounds to narrow down the best choice. We can also re-use the nitroso compound. It is still present at the end of the reaction, so we can remove it and use it in future reactions."

While the nitroso compound produces usable amounts of nanoclusters for potential semiconductor applications and is reusable in subsequent production, it is toxic, Johnson noted. "It is great because it allowed us to make these clusters that had never been made before, but it is not truly a green-chemistry method," Johnson said. "We're looking at how it works and hope to replace it with a more benign reagent."

Co-authors with Mensinger, Johnson and Keszler on the paper were Jason T. Gatlin and Lev N. Zakharov, both of the University of Oregon, and Stephen T. Meyers, a graduate student of Keszler's at OSU.

The National Science Foundation helped support the research through a CAREER award to Johnson and an Integrative Graduate Education and Research Training grant. Additional funding came from the Research Corp. through a 2006 Cottrell Scholar award to Johnson and Army Research Laboratory funds provided through ONAMI.

####

About University of Oregon
The University of Oregon is a world-class teaching and research institution and Oregon's flagship public university. The UO is a member of the Association of American Universities (AAU), an organization made up of 62 of the leading public and private research institutions in the United States and Canada. Membership in the AAU is by invitation only. The University of Oregon is one of only two AAU members in the Pacific Northwest.

For more information, please click here

Contacts:
Jim Barlow

541-346-3481

Sources:
Darren Johnson
assistant professor of chemistry
541-346-1695


Douglas Keszler
distinguished professor of chemistry
Oregon State University
541-737-6736

Copyright © University of Oregon

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Johnson faculty page

Keszler faculty page

UO chemistry departmen

UO Materials Science Institute

Related News Press

News and information

UT Dallas engineers twist nanofibers to create structures tougher than bulletproof vests March 27th, 2015

Novel nanoparticle therapy promotes wound healing March 27th, 2015

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Using magnetic fields to understand high-temperature superconductivity: Los Alamos explores experimental path to potential 'next theory of superconductivity' March 27th, 2015

Chip Technology

State-of-the-art online system unveiled to pinpoint metrology software accuracy March 27th, 2015

SUNY POLY CNSE to Host First Ever Northeast Semi Supply Conference (NESCO) Conference Will Connect New and Emerging Innovators in the Northeastern US and Canada with Industry Leaders and Strategic Investors to Discuss Future Growth Opportunities in NYS March 25th, 2015

NXP and GLOBALFOUNDRIES Announce Production of 40nm Embedded Non-Volatile Memory Technology: Co-developed technology to leverage GLOBALFOUNDRIES 40nm process technology platform March 24th, 2015

Building shape inspires new material discovery March 24th, 2015

Announcements

UT Dallas engineers twist nanofibers to create structures tougher than bulletproof vests March 27th, 2015

Novel nanoparticle therapy promotes wound healing March 27th, 2015

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Using magnetic fields to understand high-temperature superconductivity: Los Alamos explores experimental path to potential 'next theory of superconductivity' March 27th, 2015

Alliances/Partnerships/Distributorships

NXP and GLOBALFOUNDRIES Announce Production of 40nm Embedded Non-Volatile Memory Technology: Co-developed technology to leverage GLOBALFOUNDRIES 40nm process technology platform March 24th, 2015

Young NTU Singapore spin-off clinches S$4.3 million joint venture with Chinese commercial giant March 23rd, 2015

Halas, Nordlander awarded Optical Society's R.W. Wood Prize: Rice University researchers recognized for pioneering nanophotonics March 21st, 2015

EU Funded PCATDES Project has completed its half-period with success March 19th, 2015

Research partnerships

SUNY Poly & M+W Make Major Announcement: Major Expansion To Include M+W Owned Gehrlicher Solar America Corporation That Will Create up to 400 Jobs to Develop Solar Power Plants at SUNY Poly Sites Across New York State March 26th, 2015

ORNL-led team demonstrates desalination with nanoporous graphene membrane March 25th, 2015

New kind of 'tandem' solar cell developed: Researchers combine 2 types of photovoltaic material to make a cell that harnesses more sunlight March 24th, 2015

UW scientists build a nanolaser using a single atomic sheet March 24th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE