Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Liquid crystals line up to make self-healing photovoltaic device

Figure 1: Schematic of the liquid crystal molecule (top) and the formed liquid crystal photovoltaic device (bottom). Purple spheres represent the fullerene and yellow/green chains the oligothiophene, the hydrophobic/hydrophilic tails are represented by blue/red lines respectively. Image:Riken
Figure 1: Schematic of the liquid crystal molecule (top) and the formed liquid crystal photovoltaic device (bottom). Purple spheres represent the fullerene and yellow/green chains the oligothiophene, the hydrophobic/hydrophilic tails are represented by blue/red lines respectively. Image:Riken

Abstract:
Molecules containing both electron donors and acceptors have been functionalized with tails that control their arrangement in a liquid-crystal photovoltaic device

Liquid crystals line up to make self-healing photovoltaic device

Japan | Posted on October 31st, 2008

A huge market is developing for small disposable electronic devices, ranging from security tags to point-of-care diagnostics. Many of these devices require a power source, and photovoltaic devices (solar cells) are an attractive option. However, the expense of preparing and processing inorganic semiconductors used in traditional solar cells precludes their use in such applications. Organic photovoltaic devices, meanwhile have great potential in this area; they are relatively easy to prepare and can be processed by simple techniques such as inkjet printing.

Organic photovoltaic devices contain both electron donors, which release an electron when irradiated, and electron acceptors, which complete the circuit necessary to convert light energy into electrical energy. However, mixtures of typical electron donors such as π-conjugated oligomers—short chains of repeated, unsaturated, organic molecules, with alternating double and single bonds—and electron acceptors, such as C60 (buckminsterfullerene), have a tendency to form alternating stacks that results in lower efficiency. A partial solution is to directly attach the electron donor to the electron acceptor by a covalent bond and have both in a single molecule, but it is still important to have control over how the molecules pack together.

Now, a team of Japanese researchers including Takuzo Aida from the University of Tokyo and Masaki Takata from the RIKEN SPring-8 Center in Harima have designed liquid crystals—a phase that flows like a liquid but has short-range order between the molecules—that spontaneously assemble to form a donor-acceptor array1. "It's important to form separated columns or layers of the donors and acceptors, and to make a large contact area between them," explains Yohei Yamamoto, another member of the team from the Japan Science and Technology Agency in Tokyo.

The molecules they designed feature a fullerene—the electron acceptor—at one end and a thiophene oligomer—the electron donor—at the other. A hydrophobic, or water-repellent, tail is attached to the donor end and a hydrophilic, or water-loving, tail is attached to the acceptor end. This functionalization ensures that the molecules of the liquid crystal line up (Fig. 1) to produce ordered layers of donors and acceptors and results in efficient photovoltaic behavior. "The liquid characteristics are useful as well," notes Yamamoto, "the devices are self-healing as defects in the layer structure can be repaired by a simple heating and cooling process." The design principles developed in this work should lead to the development of high-efficiency organic photovoltaic devices.
Reference

1. Li, W.-S., Yamamoto, Y., Fukushima, T., Saeki, A., Seki, S., Tagawa, S., Masunaga, H., Sasaki, S., Takata, M. & Aida, T. Amphiphilic molecular design as a rational strategy for tailoring bicontinuous electron donor and acceptor arrays: photoconductive liquid crystalline oligothiophene-C60 dyads. Journal of the American Chemical Society 130, 8886-8887 (2008).

The corresponding author for this highlight is based at the RIKEN Structural Materials Science Laboratory

####

For more information, please click here

Copyright © Riken

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

article

Related News Press

News and information

New nano approach could cut dose of leading HIV treatment in half February 24th, 2017

Atom-scale oxidation mechanism of nanoparticles helps develop anti-corrosion materials February 24th, 2017

Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles February 23rd, 2017

Particle Works creates range of high performance quantum dots February 23rd, 2017

Discoveries

New nano approach could cut dose of leading HIV treatment in half February 24th, 2017

Atom-scale oxidation mechanism of nanoparticles helps develop anti-corrosion materials February 24th, 2017

Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles February 23rd, 2017

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Announcements

New nano approach could cut dose of leading HIV treatment in half February 24th, 2017

Atom-scale oxidation mechanism of nanoparticles helps develop anti-corrosion materials February 24th, 2017

Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles February 23rd, 2017

Particle Works creates range of high performance quantum dots February 23rd, 2017

Energy

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

In-cell molecular sieve from protein crystal February 14th, 2017

NREL research pinpoints promise of polycrystalline perovskites February 8th, 2017

Solar/Photovoltaic

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Material can turn sunlight, heat and movement into electricity -- all at once: Extracting energy from multiple sources could help power wearable technology February 9th, 2017

NREL research pinpoints promise of polycrystalline perovskites February 8th, 2017

Printing/Lithography/Inkjet/Inks/Bio-printing

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

New stem cell technique shows promise for bone repair January 25th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Nanowire 'inks' enable paper-based printable electronics: Highly conductive films make functional circuits without adding high heat January 4th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project